1
|
Song C, Jin G, Guo Z, Yu D, Liang X. Chromatographic evaluation and application of nitrogenous heterocyclic ring-bonded stationary phase in hydrophilic interaction liquid chromatography. J Chromatogr A 2024; 1734:465315. [PMID: 39216280 DOI: 10.1016/j.chroma.2024.465315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) based on polar stationary phases has vital research significance in the separation of polar compounds. Numerous HILIC stationary phases with different structures have been developed, which do not have universal properties and broad selectivity, making it a challenge to select the suitable column based on the properties of the samples. Consequently, it is particularly important to develop a bonded phase capable of separating a wide variety of samples, while having enhanced retention, improved selectivity, symmetric peak shape and good stability. Herein, a novel nitrogen-containing heterocyclic bonded phase with multiple functionalities, such as thioether, amino and hydroxyl groups (named AMTA) was employed as HILIC stationary phase. Detailed chromatographic evaluations were carried out, and the results showed that it was superior to other hydrophilic chromatographic columns in terms of selectivity, peak shapes and practical sample separation. Lastly, it has been verified that AMTA exhibited high orthogonality with the XBridge C18 column of reversed-phase liquid chromatography (RPLC) mode. In summary, we anticipate our assay to be instructive to other researchers in developing the HILIC stationary phase.
Collapse
Affiliation(s)
- Chunying Song
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaowa Jin
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Dongping Yu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| |
Collapse
|
2
|
Further Evaluation of the Base Stability of Hydrophilic Interaction Chromatography Columns Packed with Silica or Ethylene-Bridged Hybrid Particles. SEPARATIONS 2023. [DOI: 10.3390/separations10030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
One of the fundamental attributes of a liquid chromatography column is its stability when exposed to acidic and basic mobile phases. However, there have been relatively few reports to date on the stability of hydrophilic interaction chromatography (HILIC) columns. Here, we report the results of stability evaluations carried out for HILIC columns packed with ethylene-bridged hybrid or silica particles using accelerated conditions, employing a 100% aqueous pH 11.3 ammonium bicarbonate mobile phase at 70 °C. Under these conditions, the primary mode of column failure was a loss of efficiency due to the formation of voids resulting from the hydrolysis of the particles. We investigated the dependence of stability on the surface area of both unbonded and sulfobetaine-bonded ethylene-bridged hybrid stationary phases. The results show a clear trend of stability increasing as the surface area decreases. Several commercially available HILIC columns that are recommended for use with high-pH mobile phases were also evaluated. The results show times to 50% loss of the initial efficiency ranging from 0.3 to 9.9 h. Columns containing unbonded, sulfobetaine-bonded or diol-bonded ethylene-bridged hybrid stationary phases had longer lifetimes than amino-bonded silica or sulfobetaine-bonded, hybrid-coated, superficially porous silica columns.
Collapse
|
3
|
Shen Y, Geng H, Zhang F, Li Z, Yang B. A polyethyleneimine-functionalized polymer substrate polar stationary phase. J Chromatogr A 2023; 1689:463711. [PMID: 36586280 DOI: 10.1016/j.chroma.2022.463711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
A polyethyleneimine (PEI)-functionalized polymer substrate polar stationary phase was prepared for hydrophilic interaction chromatography (HILIC) by grafting PEI onto poly(styrene-divinylbenzene) (PS-DVB) microspheres. The phase shows a U-shape retention profile and it exhibits typical hydrophilic characteristic when the organic solvent fraction in the mobile phase is > 60%. Hydrogen bonding, anion exchange, and hydrophobic interaction are involved in the retention mechanism. Good separation and unique selectivity for acidic, basic and neutral polar analytes were achieved. It showed extremely low column bleed (comparable to that of blank) under gradient elution mode (even to 50% fraction of water) and wide pH tollerance range (at least 1-13).
Collapse
Affiliation(s)
- Yufeng Shen
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East-China University of Science and Technology, 130 Meilong RD, Pharmacy School, Shanghai 200237, China
| | - Huiliang Geng
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East-China University of Science and Technology, 130 Meilong RD, Pharmacy School, Shanghai 200237, China
| | - Feifang Zhang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East-China University of Science and Technology, 130 Meilong RD, Pharmacy School, Shanghai 200237, China.
| | - Zongying Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East-China University of Science and Technology, 130 Meilong RD, Pharmacy School, Shanghai 200237, China
| | - Bingcheng Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East-China University of Science and Technology, 130 Meilong RD, Pharmacy School, Shanghai 200237, China.
| |
Collapse
|
4
|
Kartsova LA, Bessonova EA, Deev VA, Kolobova EA. Current Role of Modern Chromatography with Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy in the Investigation of Biomarkers of Endometriosis. Crit Rev Anal Chem 2023; 54:2110-2133. [PMID: 36625278 DOI: 10.1080/10408347.2022.2156770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endometriosis has a wide range of clinical manifestations, and the disease course is unpredictable, making the diagnosis a challenging task. Despite significant advances in the pathophysiology of endometriosis and various proposed theories, the exact etiology is not fully understood and is still unknown. The most commonly used biomarker of endometriosis is CA-125, however, it is nonspecific and is applied for cancers diagnosis. Therefore, the development of reliable noninvasive diagnostic tests for the early diagnosis of endometriosis remains one of the top priorities. Omics technologies are very promising approaches for constructing diagnostic models and biomarker discovery. Their use can greatly facilitate the study of such a complex disease as endometriosis. Nowadays, powerful analytical platforms commonly used in omics, such as gas and liquid chromatography with mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, have proven to be a promising tools for biomarker discovery. The aim of this review is to summarize the various features of the analytical approaches, practical challenges and features of gas and liquid chromatography with MS and NMR spectroscopy (including sample processing protocols, technological advancements, and methodology) used for profiling of metabolites, lipids, peptides and proteins in physiological fluids and tissues from patients with endometriosis. In addition, this report devotes special attention to the issue of how comprehensive analyses of these profiles can effectively contribute to the study of endometriosis. The search query included reports published between 2012 and 2022 years in PubMed, Web-of-Science, SCOPUS, Science Direct.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Alekseevna Kolobova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
- The Federal State Institute of Public Health 'The Nikiforov Russian Center of Emergency and Radiation Medicine', The Ministry of Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters, St. Petersburg, Russia
| |
Collapse
|
5
|
Gilar M, Berthelette KD, Walter TH. Contribution of ionic interactions to stationary phase selectivity in hydrophilic interaction chromatography. J Sep Sci 2022; 45:3264-3275. [PMID: 35347885 PMCID: PMC9545918 DOI: 10.1002/jssc.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
We compared the separation selectivities of 19 different hydrophilic interaction chromatography columns. The stationary phases included underivatized silica and hybrid particles, cyano-bonded silica, materials with neutral ligands such as amide, diol, pentahydroxy, and urea, zwitterionic sorbents, and mixed-mode materials with amine functionalities. A set of 77 small molecules was used to evaluate the columns. We visualized the retention behavior of the different columns using retention time correlation plots. The analytes were classified as cations, anions, or neutral based on their estimated charge under the separation conditions. This involved adjusting the dissociation constants of the analytes for the acetonitrile content of the mobile phase and experimentally determining the pH of the mobile phase containing 70% acetonitrile. The retention correlation plots show that the selectivity differences strongly depended on ionic interactions. Comparisons of the neutral stationary phases (e.g., diol vs. amide) showed more similar selectivity than did comparisons of neutral columns versus columns with cation or anion exchange activity (bare silica or amine columns, respectively). The zwitterionic columns did not behave as perfectly neutral. The correlation plots indicated that they exhibited either cation or anion exchange activity, although to a lesser degree than the silica and amine-containing stationary phases.
Collapse
Affiliation(s)
- Martin Gilar
- Separations R&DWaters CorporationMilfordMassachusettsUSA
| | | | | |
Collapse
|
6
|
Popov AS, Maksimov GS, Shpigun OA, Chernobrovkina AV. Adsorbents with a Covalently Bonded Polymer Layer for Hydrophilic Interaction Liquid Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Evaluation of the Base Stability of Hydrophilic Interaction Chromatography Columns Packed with Silica or Ethylene-Bridged Hybrid Particles. SEPARATIONS 2022. [DOI: 10.3390/separations9060146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Stability as a function of mobile phase pH is an important consideration when selecting a chromatographic column. While the pH stability of reversed-phase columns is widely studied, there are relatively few reports of the stability of hydrophilic interaction chromatography (HILIC) columns. We evaluated the stability of silica and ethylene-bridged hybrid HILIC columns when used with mobile phases containing basic buffers. The predominant mode of column degradation observed in our studies was a decrease in efficiency due to voiding, resulting from the hydrolysis of the silica particles. Associated with this were increases in tailing factors. Retention factor changes were also noted but were smaller than the efficiency losses. The dependence of the rate of efficiency decrease on the key variables of temperature, mobile phase pH and water content were studied for an unbonded silica column. The effect of the acetonitrile concentration on the pH of the mixed aqueous/acetonitrile mobile phases was also investigated. Using conditions found to cause a 50% decrease in efficiency after approximately five hours of exposure to the basic solution, we evaluated eight different commercially available HILIC columns containing silica or ethylene-bridged hybrid particles. The results show large differences between the stability of the silica and ethylene-bridged hybrid particle stationary phases, with the latter exhibiting greater stability.
Collapse
|
8
|
Geng H, Wang Z, Zhang F, Li Z, Yang B. A hyperbranched polyglycerol-functionalized polymer polar stationary phase. J Chromatogr A 2022; 1670:462946. [PMID: 35325650 DOI: 10.1016/j.chroma.2022.462946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
A polymer polar stationary phase functionalized with hyperbranched polyglycerol for hydrophilic interaction chromatography (HILIC) is described. It is prepared via surface-initiated ring-opening polymerization of hyperbranched polyglycerol onto hydrolzed poly(glycidyl methacrylate-divinylbenzene) microspheres. The capacity of the functional groups can be maniputed by repeating hyperbranch layers. The phase showed typical HILIC character with good separation performance towards tested polar analytes. It also exhibited wider pH tolerance range (e.g. at least 2 to 12) and as well negligible bleed level under gradient elution mode (even to 50% fraction of water).
Collapse
Affiliation(s)
- Huiliang Geng
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong RD, Pharmacy School, East-China Univ. Sci. Tech., Shanghai 200237, China
| | - Zihan Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong RD, Pharmacy School, East-China Univ. Sci. Tech., Shanghai 200237, China
| | - Feifang Zhang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong RD, Pharmacy School, East-China Univ. Sci. Tech., Shanghai 200237, China.
| | - Zongying Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong RD, Pharmacy School, East-China Univ. Sci. Tech., Shanghai 200237, China
| | - Bingcheng Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong RD, Pharmacy School, East-China Univ. Sci. Tech., Shanghai 200237, China.
| |
Collapse
|
9
|
Kozlik P, Vaclova J, Kalikova K. Mixed-mode hydrophilic interaction/ion-exchange liquid chromatography – Separation potential in peptide analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Molnarova K, Duris A, Jecmen T, Kozlik P. Comparison of human IgG glycopeptides separation using mixed-mode hydrophilic interaction/ion-exchange liquid chromatography and reversed-phase mode. Anal Bioanal Chem 2021; 413:4321-4328. [PMID: 34002272 DOI: 10.1007/s00216-021-03388-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
Glycoproteomics is a challenging branch of proteomics because of the micro- and macro-heterogeneity of protein glycosylation. Hydrophilic interaction liquid chromatography (HILIC) is an advantageous alternative to reversed-phase chromatography for intact glycopeptide separation prior to their identification by mass spectrometry. Nowadays, several HILIC columns differing in used chemistries are commercially available. However, there is a lack of comparative studies assessing their performance, and thus providing guidance for the selection of an adequate stationary phase for different glycoproteomics applications. Here, we compare three HILIC columns recently developed by Advanced Chromatography Technologies (ACE)- with unfunctionalized (HILIC-A), polyhydroxy functionalized (HILIC-N), and aminopropyl functionalized (HILIC-B) silica- with a C18 reversed-phase column in the separation of human immunoglobulin G glycopeptides. HILIC-A and HILIC-B exhibit mixed-mode separation combining hydrophilic and ion-exchange interactions for analyte retention. Expectably, reversed-phase mode successfully separated clusters of immunoglobulin G1 and immunoglobulin G2 glycopeptides, which differ in amino acid sequence, but was not able to adequately separate different glycoforms of the same peptide. All ACE HILIC columns showed higher separation power for different glycoforms, and we show that each column separates a different group of glycopeptides more effectively than the others. Moreover, HILIC-A and HILIC-N columns separated the isobaric A2G1F1 glycopeptides of immunoglobulin G, and thus showed the potential for the elucidation of the structure of isomeric glycoforms. Furthermore, the possible retention mechanism for the HILIC columns is discussed on the basis of the determined chromatographic parameters.
Collapse
Affiliation(s)
- Katarina Molnarova
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Ales Duris
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Tomas Jecmen
- Department of Biochemistry, Faculty of Science, Charles University, 128 00, Prague 2, Czech Republic
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic.
| |
Collapse
|
11
|
Comparison of the steric selectivity on hydrophilic interaction chromatography columns modified with poly(acrylamide) possessing different morphology. J Chromatogr A 2021; 1650:462207. [PMID: 34082188 DOI: 10.1016/j.chroma.2021.462207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/24/2022]
Abstract
Poly(acrylamide) (PAAm)-modified hydrophilic interaction chromatography (HILIC) columns were prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) and free radical polymerization (FRP) to generate brush-like and mushroom-like polymer chains on silica particles, respectively. The maltose homologues (MHs) and cyclodextrins (CDs) were chosen as analytes to evaluate steric selectivity by the different polymer morphologies in the ATRP-PAAm and the FRP-PAAm columns. The ATRP-PAAm exhibited superior retention than the FRP-PAAm and three commercial HILIC columns. The house-made PAAm columns provided significant hydrophilicity that enabled to analysis the oligosaccharides even in 60:40 mixture of acetonitrile-aqueous buffer. In the case of three ATRP-PAAm columns characterized by different polymer lengths and the density on the silica particles, those are different thickness of the water-enriched layer, and phase ratio φ, based on hydrophilicity of them columns. The logarithm of the retention factor (ln k) displayed a non-linear dependence on the inverse of the temperature (1/T, T = 278-333 K). Notably, a similar correlation was observed to exist between the logarithm of the phase ratio (ln φ), and 1/T. A van't Hoff plot was used to determine the thermodynamic parameters of the partition process for each MH. The values of the Gibbs free energy (ΔG°) for the analytes partition on the ATRP-PAAm columns were smaller than their counterparts measured for the FRP-PAAm columns; by contrast, the opposite trend was observed for the ΔG° values measured for CDs. The standard entropy ΔS° for MHs and CDs were comparable for the two types PAAm columns, while, the standard enthalpy, ΔH° displays significant difference between the ATRP and the FRP PAAm columns. These findings indicate that the differences between PAAm morphology and polymer densities on the stationary phase surface affect analyte differentiation on the basis of molecular steric factors. The higher selectivity for MHs and CDs displayed by ATRP-PAAm columns with respect to their FRP-PAAm and commercial amide columns will be useful for the fine separation of oligosaccharides.
Collapse
|
12
|
Erkmen C, Gebrehiwot WH, Uslu B. Hydrophilic Interaction Liquid Chromatography (HILIC): Latest Applications in the Pharmaceutical Researches. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200402101501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background:
Significant advances have been occurred in analytical research since the 1970s
by Liquid Chromatography (LC) as the separation method. Reverse Phase Liquid Chromatography
(RPLC) method, using hydrophobic stationary phases and polar mobile phases, is the most commonly
used chromatographic method. However, it is difficult to analyze some polar compounds with this
method. Another separation method is the Normal Phase Liquid Chromatography (NPLC), which involves
polar stationary phases with organic eluents. NPLC presents low-efficiency separations and
asymmetric chromatographic peak shapes when analyzing polar compounds. Hydrophilic Interaction
Liquid Chromatography (HILIC) is an interesting and promising alternative method for the analysis of
polar compounds. HILIC is defined as a separation method that combines stationary phases used in the
NPLC method and mobile phases used in the RPLC method. HILIC can be successfully applied to all
types of liquid chromatographic separations such as pharmaceutical compounds, small molecules, metabolites,
drugs of abuse, carbohydrates, toxins, oligosaccharides, peptides, amino acids and proteins.
Objective:
This paper provides a general overview of the recent application of HILIC in the pharmaceutical
research in the different sample matrices such as pharmaceutical dosage form, plasma, serum,
environmental samples, animal origin samples, plant origin samples, etc. Also, this review focuses on
the most recent and selected papers in the drug research from 2009 to the submission date in 2020,
dealing with the analysis of different components using HILIC.
Results and Conclusion:
The literature survey showed that HILIC applications are increasing every
year in pharmaceutical research. It was found that HILIC allows simultaneous analysis of many compounds
using different detectors.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | | | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
13
|
Li Z, Jiang D, Dai Y, Dai Z, Jin Y, Fu Q, Liang X. Isolation of three polyoxins by reversed-phase liquid chromatography with pure aqueous mobile phase. J Sep Sci 2021; 44:2020-2028. [PMID: 33629802 DOI: 10.1002/jssc.202001181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Developing methods for the isolation of highly polar compounds from complex samples is of great significance. In this study, three polyoxins were successfully isolated from a complex sample (PN1-1# ) by preparative high-performance liquid chromatography. Separation was carried out on five polar reversed-phase stationary phases, using pure aqueous as mobile phase, where the C18HC column can provide the best performance for PN1-1# . Next, the effects of the mobile phase composition were studied. It was found that adding NaClO4 can enhance the retention and resolution, and adding NaH2 PO4 was beneficial to maintain good peak shapes when the sample loading increased. Therefore, the optimized mobile phase consisting of 20 mmol NaH2 PO4 and 20 mmol NaClO4 (adding H3 PO4 to adjust pH 2) was used to separate PN1-1# . This method of using 100% aqueous phase can effectively improve both the retention and the solubility of polar samples. Eventually, through further purification, three compounds, namely, polyoxins B, D, and G, were obtained. This paper provided an effective and eco-friendly strategy for the preparative-scale separation of polar samples.
Collapse
Affiliation(s)
- Zhidong Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Dasen Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yingping Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Zhuoshun Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China.,Key Laboratory of Separation Science for Analytical Chemistry, Key Laboratory of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
14
|
Kartsova LA, Somova VD, Bessonova EA. Determination of Zoledronic Acid and Creatinine by Hydrophilic Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821020106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
den Uijl MJ, Schoenmakers PJ, Pirok BWJ, van Bommel MR. Recent applications of retention modelling in liquid chromatography. J Sep Sci 2020; 44:88-114. [PMID: 33058527 PMCID: PMC7821232 DOI: 10.1002/jssc.202000905] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
Recent applications of retention modelling in liquid chromatography (2015–2020) are comprehensively reviewed. The fundamentals of the field, which date back much longer, are summarized. Retention modeling is used in retention‐mechanism studies, for determining physical parameters, such as lipophilicity, and for various more‐practical purposes, including method development and optimization, method transfer, and stationary‐phase characterization and comparison. The review focusses on the effects of mobile‐phase composition on retention, but other variables and novel models to describe their effects are also considered. The five most‐common models are addressed in detail, i.e. the log‐linear (linear‐solvent‐strength) model, the quadratic model, the log–log (adsorption) model, the mixed‐mode model, and the Neue–Kuss model. Isocratic and gradient‐elution methods are considered for determining model parameters and the evaluation and validation of fitted models is discussed. Strategies in which retention models are applied for developing and optimizing one‐ and two‐dimensional liquid chromatographic separations are discussed. The review culminates in some overall conclusions and several concrete recommendations.
Collapse
Affiliation(s)
- Mimi J den Uijl
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Peter J Schoenmakers
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Bob W J Pirok
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Maarten R van Bommel
- Analytical Chemistry Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands.,University of Amsterdam, Faculty of Humanities, Conservation and Restoration of Cultural Heritage, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Redón L, Subirats X, Rosés M. HILIC characterization: Estimation of phase volumes and composition for a zwitterionic column. Anal Chim Acta 2020; 1130:39-48. [DOI: 10.1016/j.aca.2020.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
|
17
|
Advances in lipidomics. Clin Chim Acta 2020; 510:123-141. [PMID: 32622966 DOI: 10.1016/j.cca.2020.06.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023]
Abstract
The present article examines recently published literature on lipids, mainly focusing on research involving glycero-, glycerophospho- and sphingo-lipids. The primary aim is identification of distinct profiles in biologic lipidomic systems by ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS, tandem MS) with multivariate data analysis. This review specifically targets lipid biomarkers and disease pathway mechanisms in humans and artificial targets. Different specimen matrices such as primary blood derivatives (plasma, serum, erythrocytes, and blood platelets), faecal matter, urine, as well as biologic tissues (liver, lung and kidney) are highlighted.
Collapse
|
18
|
Taniguchi A, Tamura S, Ikegami T. The relationship between polymer structures on silica particles and the separation characteristics of the corresponding columns for hydrophilic interaction chromatography. J Chromatogr A 2020; 1618:460837. [DOI: 10.1016/j.chroma.2019.460837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 11/26/2022]
|