1
|
Wang E, Zhang D, Braun MS, Hotz-Wagenblatt A, Pärt T, Arlt D, Schmaljohann H, Bairlein F, Lei F, Wink M. Can Mitogenomes of the Northern Wheatear (Oenanthe oenanthe) Reconstruct Its Phylogeography and Reveal the Origin of Migrant Birds? Sci Rep 2020; 10:9290. [PMID: 32518318 PMCID: PMC7283232 DOI: 10.1038/s41598-020-66287-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
The Northern Wheatear (Oenanthe oenanthe, including the nominate and the two subspecies O. o. leucorhoa and O. o. libanotica) and the Seebohm’s Wheatear (Oenanthe seebohmi) are today regarded as two distinct species. Before, all four taxa were regarded as four subspecies of the Northern Wheatear. Their classification has exclusively been based on ecological and morphological traits, while their molecular characterization is still missing. With this study, we used next-generation sequencing to assemble 117 complete mitochondrial genomes covering O. o. oenanthe, O. o. leucorhoa and O. seebohmi. We compared the resolution power of each individual mitochondrial marker and concatenated marker sets to reconstruct the phylogeny and estimate speciation times of three taxa. Moreover, we tried to identify the origin of migratory wheatears caught on Helgoland (Germany) and on Crete (Greece). Mitogenome analysis revealed two different ancient lineages that separated around 400,000 years ago. Both lineages consisted of a mix of subspecies and species. The phylogenetic trees, as well as haplotype networks are incongruent with the present morphology-based classification. Mitogenome could not distinguish these presumed species. The genetic panmixia among present populations and taxa might be the consequence of mitochondrial introgression between ancient wheatear populations.
Collapse
Affiliation(s)
- Erjia Wang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Dezhi Zhang
- Key laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, UniversityMerops apiaster. J. Divers of Chinese Academy of Sciences, Beijing, China
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Omics IT and Data Management Core Facility, German Cancer Research Center, Heidelberg University, Heidelberg, Germany
| | - Tomas Pärt
- Department of Ecology, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Debora Arlt
- Department of Ecology, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Heiko Schmaljohann
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany.,Institute for Biology und Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Franz Bairlein
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany
| | - Fumin Lei
- Key laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, UniversityMerops apiaster. J. Divers of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|