1
|
Verma H, Kaur S, Jeeth P, Kumar P, Kadhirvel S, Dhiman M, Mantha AK. Understanding Aβ 25-35 peptide altered exosomal proteome and associated pathways linked with the Alzheimer's disease pathogenesis using human neuroblastoma SH-SY5Y Cells. Metab Brain Dis 2024; 40:25. [PMID: 39565424 DOI: 10.1007/s11011-024-01469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/11/2024] [Indexed: 11/21/2024]
Abstract
The central nervous system (CNS) involves a complex interplay of communications between the neurons and various glial cells, which is crucial for brain functions. The major interactomes are exosomes that transmit sundry molecules (DNA, miRNAs, and proteins) between the cells and thus alter cell physiology. Exosomes can act as neuroprotective or neurodegenerative agents depending on the microenvironment of cells secreting them. Therefore, revealing exosome proteome becomes important to understand donor cells' physiology and its effect on the recipient cell. In this study, oxidative stress was induced by Aβ25-35 in the human neuroblastoma SH-SY5Y cells and the protective effects of phytochemical ferulic acid (FA) were evaluated alone and in combination with Aβ25-35 (pre-treated for 3 h before Aβ25-35 exposure) and proteome of their secreted exosomes was analyzed, which was carried out via a high-resolution LC-MS Triple-ToF and further network-based analysis has been carried out using various bioinformatics tools. The proteomic profiling enlightened the multiple roles of exosomes as proteins associated with the various pathways advocate that exosomes can mediate a wide range of effects, from normal physiological processes like synaptic plasticity, neuronal metabolic support, nerve regeneration, DNA repair, axon guidance, and long-term potentiation (LTP) to abnormal pathological processes like inflammatory responses, oxidative stress, apoptosis, and formation of neutrophil extracellular traps (NETs). On comparison, treatment with Aβ25-35 resulted in a significant modulation of the exosomal proteome, promoting pathways associated with neurodegeneration. Conversely, the phytochemical FA displayed a protective effect by effectively countering Aβ25-35-induced oxidative stress responses linked with neurodegeneration, as seen in Alzheimer's disease (AD). Taken together, this study highlights the dual role of exosomes in physiological and pathophysiological neurodegenerative AD, which intricately depend on the particular cellular milieu.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Priyanka Jeeth
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Saraboji Kadhirvel
- Department of Computational Sciences, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
2
|
Papadopoulos C, Anagnostopoulos K, Tsiptsios D, Karatzetzou S, Liaptsi E, Lazaridou IZ, Kokkotis C, Makri E, Ioannidou M, Aggelousis N, Vadikolias K. Unexplored Roles of Erythrocytes in Atherothrombotic Stroke. Neurol Int 2023; 15:124-139. [PMID: 36810466 PMCID: PMC9944955 DOI: 10.3390/neurolint15010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Stroke constitutes the second highest cause of morbidity and mortality worldwide while also impacting the world economy, triggering substantial financial burden in national health systems. High levels of blood glucose, homocysteine, and cholesterol are causative factors for atherothrombosis. These molecules induce erythrocyte dysfunction, which can culminate in atherosclerosis, thrombosis, thrombus stabilization, and post-stroke hypoxia. Glucose, toxic lipids, and homocysteine result in erythrocyte oxidative stress. This leads to phosphatidylserine exposure, promoting phagocytosis. Phagocytosis by endothelial cells, intraplaque macrophages, and vascular smooth muscle cells contribute to the expansion of the atherosclerotic plaque. In addition, oxidative stress-induced erythrocytes and endothelial cell arginase upregulation limit the pool for nitric oxide synthesis, leading to endothelial activation. Increased arginase activity may also lead to the formation of polyamines, which limit the deformability of red blood cells, hence facilitating erythrophagocytosis. Erythrocytes can also participate in the activation of platelets through the release of ADP and ATP and the activation of death receptors and pro-thrombin. Damaged erythrocytes can also associate with neutrophil extracellular traps and subsequently activate T lymphocytes. In addition, reduced levels of CD47 protein in the surface of red blood cells can also lead to erythrophagocytosis and a reduced association with fibrinogen. In the ischemic tissue, impaired erythrocyte 2,3 biphosphoglycerate, because of obesity or aging, can also favor hypoxic brain inflammation, while the release of damage molecules can lead to further erythrocyte dysfunction and death.
Collapse
Affiliation(s)
- Charalampos Papadopoulos
- Laboratory of Biochemistry, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Anagnostopoulos
- Laboratory of Biochemistry, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Dimitrios Tsiptsios
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| | - Stella Karatzetzou
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eirini Liaptsi
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Christos Kokkotis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Evangelia Makri
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Maria Ioannidou
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Nikolaos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | | |
Collapse
|
3
|
Ianiski FR, Rech VC, Nishihira VSK, Alves CB, Baldissera MD, Wilhelm EA, Luchese C. Amyloid-β peptide absence in short term effects on kinase activity of energy metabolism in mice hippocampus and cerebral cortex. AN ACAD BRAS CIENC 2016; 88:1829-1840. [PMID: 27411072 DOI: 10.1590/0001-3765201620150776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Considering that Alzheimer's disease is a prevalent neurodegenerative disease worldwide, we investigated the activities of three key kinases: creatine kinase, pyruvate kinase and adenylate kinase in the hippocampus and cerebral cortex in Alzheimer's disease model. Male adult Swiss mice received amyloid-β or saline. One day after, mice were treated with blank nanocapsules (17 ml/kg) or meloxicam-loaded nanocapsules (5 mg/kg) or free meloxicam (5 mg/kg). Treatments were performed on alternating days, until the end of the experimental protocol. In the fourteenth day, kinases activities were performed. Amyloid-β did not change the kinases activity in the hippocampus and cerebral cortex of mice. However, free meloxicam decrease the creatine kinase activity in mitochondrial-rich fraction in the group induced by amyloid-β, but for the cytosolic fraction, it has raised in the activity of pyruvate kinase activity in cerebral cortex. Further, meloxicam-loaded nanocapsules administration reduced adenylate kinase activity in the hippocampus of mice injected by amyloid-β. In conclusion we observed absence in short-term effects in kinases activities of energy metabolism in mice hippocampus and cerebral cortex using amyloid-β peptide model. These findings established the foundation to further study the kinases in phosphoryltransfer network changes observed in the brains of patients post-mortem with Alzheimer's disease.
Collapse
Affiliation(s)
- Francine R Ianiski
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Rua dos Andradas, 1614, Conjunto I, 97010-032 Santa Maria, RS, Brasil
| | - Virginia C Rech
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Rua dos Andradas, 1614, Conjunto I, 97010-032 Santa Maria, RS, Brasil
| | - Vivian S K Nishihira
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Rua dos Andradas, 1614, Conjunto I, 97010-032 Santa Maria, RS, Brasil
| | - Catiane B Alves
- Programa de Pós-Graduação em Nanociências, Centro de Ciências Tecnológicas, Centro Universitário Franciscano, Rua dos Andradas, 1614, Conjunto I, 97010-032 Santa Maria, RS, Brasil
| | - Matheus D Baldissera
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Bairro Camobi, 97105-900 Santa Maria, RS, Brasil
| | - Ethel A Wilhelm
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, s/n, 96160-000 Capão do Leão, RS, Brasil
| | - Cristiane Luchese
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, s/n, 96160-000 Capão do Leão, RS, Brasil
| |
Collapse
|