1
|
Jaffar S, Ahmad S, Lu Y. Contribution of insect gut microbiota and their associated enzymes in insect physiology and biodegradation of pesticides. Front Microbiol 2022; 13:979383. [PMID: 36187965 PMCID: PMC9516005 DOI: 10.3389/fmicb.2022.979383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022] Open
Abstract
Synthetic pesticides are extensively and injudiciously applied to control agriculture and household pests worldwide. Due to their high use, their toxic residues have enormously increased in the agroecosystem in the past several years. They have caused many severe threats to non-target organisms, including humans. Therefore, the complete removal of toxic compounds is gaining wide attention to protect the ecosystem and the diversity of living organisms. Several methods, such as physical, chemical and biological, are applied to degrade compounds, but as compared to other methods, biological methods are considered more efficient, fast, eco-friendly and less expensive. In particular, employing microbial species and their purified enzymes makes the degradation of toxic pollutants more accessible and converts them into non-toxic products by several metabolic pathways. The digestive tract of insects is usually known as a superior organ that provides a nutrient-rich environment to hundreds of microbial species that perform a pivotal role in various physiological and ecological functions. There is a direct relationship between pesticides and insect pests: pesticides reduce the growth of insect species and alter the phyla located in the gut microbiome. In comparison, the insect gut microbiota tries to degrade toxic compounds by changing their toxicity, increasing the production and regulation of a diverse range of enzymes. These enzymes breakdown into their derivatives, and microbial species utilize them as a sole source of carbon, sulfur and energy. The resistance of pesticides (carbamates, pyrethroids, organophosphates, organochlorines, and neonicotinoids) in insect species is developed by metabolic mechanisms, regulation of enzymes and the expression of various microbial detoxifying genes in insect guts. This review summarizes the toxic effects of agrochemicals on humans, animals, birds and beneficial arthropods. It explores the preferential role of insect gut microbial species in the degradation process and the resistance mechanism of several pesticides in insect species. Additionally, various metabolic pathways have been systematically discussed to better understand the degradation of xenobiotics by insect gut microbial species.
Collapse
Affiliation(s)
- Saleem Jaffar
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Nikoukar A, Rashed A. Integrated Pest Management of Wireworms (Coleoptera: Elateridae) and the Rhizosphere in Agroecosystems. INSECTS 2022; 13:769. [PMID: 36135470 PMCID: PMC9501627 DOI: 10.3390/insects13090769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The rhizosphere is where plant roots, physical soil, and subterranean organisms interact to contribute to soil fertility and plant growth. In agroecosystems, the nature of the ecological interactions within the rhizosphere is highly dynamic due to constant disruptions from agricultural practices. The concept of integrated pest management (IPM) was developed in order to promote an approach which is complementary to the environment and non-target organisms, including natural enemies, by reducing the sole reliance on synthetic pesticides to control pests. However, some of the implemented integrated cultural and biological control practices may impact the rhizosphere, especially when targeting subterranean pests. Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are generalist herbivores and a voracious group of pests that are difficult to control. This paper introduces some existing challenges in wireworm IPM, and discusses the potential impacts of various control methods on the rhizosphere. The awareness of the potential implications of different pest management approaches on the rhizosphere will assist in decision-making and the selection of the control tactics with the least long-term adverse effects on the rhizosphere.
Collapse
Affiliation(s)
- Atoosa Nikoukar
- Southern Piedmont Research and Extension Center, Virginia Tech, Blackstone, VA 23824, USA
| | | |
Collapse
|
3
|
Wang S, Wang L, Fan X, Yu C, Feng L, Yi L. An Insight into Diversity and Functionalities of Gut Microbiota in Insects. Curr Microbiol 2020; 77:1976-1986. [PMID: 32535651 DOI: 10.1007/s00284-020-02084-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
The gut microbiota has long been of research interests due to its nutritional importance for many insects. It has been demonstrated that diversity of gut microbiota in insects can be modulated by many factors, including habitats, feeding preference, etc. Besides, the community structure of gut microbiota could also be altered during the different life stages of host insects. With development of conventional culture-dependent technologies and advanced culture-independent technologies, comprehensive and deep understanding of the functions of gut microbiota and their relationship with host insects were achieved, especially for the nutrient metabolic process mediated by them. In this review, we summarized the gut microbiota composition, major methods for gut microbiota characterization, and vital nutrient metabolic process mediated by gut microbiota in different insects. The increasing knowledge on the modulation of gut microbiota will help us for the comprehension of the contribution of gut microbiota to the nutritional metabolism of insects, prompting their growth and health.
Collapse
Affiliation(s)
- Shengchen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Luyi Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xian Fan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liang Feng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Department of Microbiology, Department of Bioengineering, School of Life Sciences, Hubei University, No. 368 Youyi Road, Wuchang District, Wuhan, 430062, Hubei, China.
| |
Collapse
|
4
|
Samoylova ES, Kostina NV, Striganova BR. Stability of the microbial population in the gut of omnivorous wireworms (Coleoptera, Elateridae). BIOL BULL+ 2017. [DOI: 10.1134/s1062359017040124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|