Teng J, Ding S, Zhang H, Wang K, Hu X. Bayesian spatiotemporal modelling analysis of hemorrhagic fever with renal syndrome outbreaks in China using R-INLA.
Zoonoses Public Health 2023;
70:46-57. [PMID:
36093577 DOI:
10.1111/zph.12999]
[Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/09/2022] [Accepted: 08/06/2022] [Indexed: 01/07/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a category B infectious disease caused by Hantavirus infection, which can cause acute kidney injury and has a high mortality rate. At present, China is the country most severely afflicted by HFRS in the world, and it is critical to carry out efficient HFRS prevention and management in a scientific and accurate manner. The study used data on the incidence of HFRS in mainland China from 2015 to 2018, built a Bayesian hierarchical spatiotemporal distribution model, and applied the Integrated Nested Laplace Approximation algorithm to analyse the factors influencing the development of HFRS, the spatial and temporal distribution characteristics, and the threshold exceedance locations. The results revealed that the woodland and grassland area (RR = 1.357, 95% CI: 1.005-1.791), economic level (RR = 1.299, 95% CI: 1.007-1.649), and traffic level (RR = 2.442, 95% CI: 1.825-3.199) were all significantly and positively associated with the development of HFRS, with traffic level having the strongest promoting effect. The seasonal cycle was obvious in time, with peaks in May-June and October-December each year, most notably in November. Spatially, there was a south-heavy north-light trend, with a high risk of incidence largely in places rich in mountain and forest vegetation, of which Guizhou, Guangxi, Guangdong, and Jiangxi provinces continuing to have a high incidence in recent years, and the evolution of the epidemic in Hubei and Hunan was becoming more serious. When the early warning threshold was set at 0.2, the detection impact was best, and Guizhou, Guangxi, Guangdong, Jiangxi, Hainan, and Tianjin were positioned near the critical point of the exceedance threshold with the highest risk of incidence. It is recommended that the relevant managers call for active vaccination of outdoor workers, such as those working in agriculture and construction sites, implement rat prevention and extermination before winter arrives, and warn high-risk and medium-high-risk areas to conduct early outbreak surveillance. Move the prevention and control gates forward based on the exceedance threshold for doing preventive and control detection and epidemic research and judgement work.
Collapse