1
|
Rocher C, Vernale A, Fierro‐Constaín L, Séjourné N, Chenesseau S, Marschal C, Issartel J, Le Goff E, Stroebel D, Jouvion J, Dutilleul M, Matthews C, Marschal F, Brouilly N, Massey‐Harroche D, Schenkelaars Q, Ereskovsky A, Le Bivic A, Renard E, Borchiellini C. The Buds of Oscarella lobularis (Porifera, Homoscleromorpha): A New Convenient Model for Sponge Cell and Evolutionary Developmental Biology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:503-528. [PMID: 39364688 PMCID: PMC11587685 DOI: 10.1002/jez.b.23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024]
Abstract
The comparative study of the four non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera) provides insights into the origin of bilaterian traits. To complete our knowledge of the cell biology and development of these animals, additional non-bilaterian models are needed. Given the developmental, histological, ecological, and genomic differences between the four sponge classes (Demospongiae, Calcarea, Homoscleromorpha, and Hexactinellida), we have been developing the Oscarella lobularis (Porifera, class Homoscleromorpha) model over the past 15 years. Here, we report a new step forward by inducing, producing, and maintaining in vitro thousands of clonal buds that now make possible various downstream applications. This study provides a full description of bud morphology, physiology, cells and tissues, from their formation to their development into juveniles, using adapted cell staining protocols. In addition, we show that buds have outstanding capabilities of regeneration after being injured and of re-epithelization after complete cell dissociation. Altogether, Oscarella buds constitute a relevant all-in-one sponge model to access a large set of biological processes, including somatic morphogenesis, epithelial morphogenesis, cell fate, body axes formation, nutrition, contraction, ciliary beating, and respiration.
Collapse
Grants
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE;
- AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR).
- The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments.
- The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE; AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR). The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments. The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
Collapse
Affiliation(s)
- Caroline Rocher
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | - Amélie Vernale
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
- Aix Marseille UniversityMarseilleFrance
| | | | - Nina Séjourné
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | | | - Julien Issartel
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | - Emilie Le Goff
- ISEM, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - David Stroebel
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS)Université PSLParisFrance
| | - Julie Jouvion
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS)Université PSLParisFrance
| | - Morgan Dutilleul
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | - Florent Marschal
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | | | | | | | | | - Emmanuelle Renard
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
- Aix Marseille UniversityMarseilleFrance
| | | |
Collapse
|
2
|
Ereskovsky A, Melnikov NP, Lavrov A. Archaeocytes in sponges: simple cells of complicated fate. Biol Rev Camb Philos Soc 2024. [PMID: 39530313 DOI: 10.1111/brv.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Archaeocytes are considered a key cell type in sponges (Porifera). They are believed to be multifunctional cells performing various functions, from nutrient digestion to acting as adult stem cells (ASCs). Thus, archaeocytes are mentioned in discussions on various aspects of sponge biology. As presumed ASCs of an early-diverged animal taxon, archaeocytes are of great fundamental interest for further progress in understanding tissue functioning in metazoans. However, the term 'archaeocyte' is rather ambiguous in its usage and understanding, and debates surrounding archaeocytes have persisted for over a century, reflecting the ongoing complexity of understanding their nature. This article presents a comprehensive revision of the archaeocyte concept, including both its historical development and biological features (i.e. taxonomic distribution, characteristics, and functions). The term 'archaeocyte' and its central aspects were introduced as early as the end of the 19th century based on data mainly from demosponges. Remarkably, despite the general lack of comparative and non-histological data, these early studies already regarded archaeocytes as the ASCs of sponges. These early views were readily inherited by subsequent studies, often without proper verification, shaping views on many aspects of sponge biology for more than a century. Taking into account all available data, we propose considering the archaeocytes as a cell type specific to the class Demospongiae. Clear homologues of archaeocytes are absent in other sponge classes. In demosponges, the term 'archaeocytes' refers to mesohyl cells that have an amoeboid shape, nucleolated nuclei, and non-specific inclusions in the cytoplasm. The absence of specific traits makes the archaeocytes a loosely defined and probably heterogeneous cell population, rendering the exhaustive characterisation of the 'true' archaeocyte population impossible. At the same time, the molecular characterisation of archaeocytes is only beginning to develop. Stemness and almost unlimited potency have always been at the core of the traditional archaeocyte concept. However, currently, the most consistent data on archaeocyte stem cell function come only from developing gemmules of freshwater sponges. For tissues of adult demosponges, the data favour a two-component stem cell system, in which archaeocytes may cooperate with another stem cell population, choanocytes. Simultaneously, cells with archaeocyte morphology function as macrophages in demosponges, participating in the food digestion cycle and immune defence. Such cells should be denoted with the more neutral term 'nucleolar amoebocytes', as the term 'archaeocyte' not only describes the morphology of a cell but also introduces the proposition of its stem nature. Thus, the future usage of the term 'archaeocyte' should be limited to cases where a cell is shown or at least presumed to be a stem cell.
Collapse
Affiliation(s)
- Alexander Ereskovsky
- Aix Marseille University, Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE), CNRS, IRD, Avignon University, chemin de la Batterie des lions, Station marine d'Endoume, Marseille, 13007, France
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova str., 26, Moscow, 119334, Russia
| | - Nikolai P Melnikov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Leninskie gory 1-12, Moscow, 119234, Russia
| | - Andrey Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Leninskie gory 1-12, Moscow, 119234, Russia
| |
Collapse
|
3
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Delahooke KM, Liu AG, Stephenson NP, Mitchell EG. 'Conga lines' of Ediacaran fronds: insights into the reproductive biology of early metazoans. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231601. [PMID: 39076788 PMCID: PMC11286166 DOI: 10.1098/rsos.231601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 07/31/2024]
Abstract
Late Ediacaran strata from Newfoundland, Canada (~574-560 Ma) document near-census palaeocommunities of some of the earliest metazoans. Such preservation enables reproductive strategies to be inferred from the spatial distribution of populations of fossilized benthic organisms, previously revealing the existence of both propagule and stoloniferous reproductive modes among Ediacaran frondose taxa. Here, we describe 'conga lines': linear arrangements of more than three closely spaced fossil specimens. We calculate probabilistic models of point maps of 13 fossil-bearing bedding surfaces and show that four surfaces contain conga lines that are not the result of chance alignments. We then test whether these features could result from passive pelagic propagules settling in the lee of an existing frond, using computational fluid dynamics and discrete phase modelling. Under Ediacaran palaeoenvironmental conditions, preferential leeside settlement at the spatial scale of the conga lines is unlikely. We therefore conclude that these features are novel and do not reflect previously described reproductive strategies employed by Ediacaran organisms, suggesting the use of mixed reproductive strategies in the earliest animals. Such strategies enabled Ediacaran frondose taxa to act as reproductive generalists and may be an important facet of early metazoan evolution.
Collapse
Affiliation(s)
| | - Alexander G. Liu
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Nile P. Stephenson
- Department of Zoology, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| | - Emily G. Mitchell
- Department of Zoology, University of Cambridge, Cambridge, UK
- Museum of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
6
|
Skorentseva KV, Bolshakov FV, Saidova AA, Lavrov AI. Regeneration in calcareous sponge relies on 'purse-string' mechanism and the rearrangements of actin cytoskeleton. Cell Tissue Res 2023; 394:107-129. [PMID: 37466725 DOI: 10.1007/s00441-023-03810-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
The crucial step in any regeneration process is epithelization, i.e. the restoration of an epithelium structural and functional integrity. Epithelization requires cytoskeletal rearrangements, primarily of actin filaments and microtubules. Sponges (phylum Porifera) are early branching metazoans with pronounced regenerative abilities. Calcareous sponges have a unique step during regeneration: the formation of a temporary structure, called regenerative membrane which initially covers a wound. It forms due to the morphallactic rearrangements of exopinaco- and choanoderm epithelial-like layers. The current study quantitatively evaluates morphological changes and characterises underlying actin cytoskeleton rearrangements during regenerative membrane formation in asconoid calcareous sponge Leucosolenia variabilis through a combination of time-lapse imaging, immunocytochemistry, and confocal laser scanning microscopy. Regenerative membrane formation has non-linear stochastic dynamics with numerous fluctuations. The pinacocytes at the leading edge of regenerative membrane form a contractile actomyosin cable. Regenerative membrane formation either depends on its contraction or being coordinated through it. The cell morphology changes significantly during regenerative membrane formation. Exopinacocytes flatten, their area increases, while circularity decreases. Choanocytes transdifferentiate into endopinacocytes, losing microvillar collar and flagellum. Their area increases and circularity decreases. Subsequent redifferentiation of endopinacocytes into choanocytes is accompanied by inverse changes in cell morphology. All transformations rely on actin filament rearrangements similar to those characteristic of bilaterian animals. Altogether, we provide here a qualitative and quantitative description of cell transformations during reparative epithelial morphogenesis in a calcareous sponge.
Collapse
Affiliation(s)
- Kseniia V Skorentseva
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Fyodor V Bolshakov
- Pertsov White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
| | - Alina A Saidova
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, 119991, Russia
| | - Andrey I Lavrov
- Pertsov White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
| |
Collapse
|
7
|
Ros-Rocher N, Kidner R, Gerdt C, Davidson W, Ruiz-Trillo I, Gerdt J. Chemical factors induce aggregative multicellularity in a close unicellular relative of animals. Proc Natl Acad Sci U S A 2023; 120:e2216668120. [PMID: 37094139 PMCID: PMC10161120 DOI: 10.1073/pnas.2216668120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/26/2023] Open
Abstract
Regulated cellular aggregation is an essential process for development and healing in many animal tissues. In some animals and a few distantly related unicellular species, cellular aggregation is regulated by diffusible chemical cues. However, it is unclear whether regulated cellular aggregation was part of the life cycles of the first multicellular animals and/or their unicellular ancestors. To fill this gap, we investigated the triggers of cellular aggregation in one of animals' closest unicellular living relatives-the filasterean Capsaspora owczarzaki. We discovered that Capsaspora aggregation is induced by chemical cues, as observed in some of the earliest branching animals and other unicellular species. Specifically, we found that calcium ions and lipids present in lipoproteins function together to induce aggregation of viable Capsaspora cells. We also found that this multicellular stage is reversible as depletion of the cues triggers disaggregation, which can be overcome upon reinduction. Our finding demonstrates that chemically regulated aggregation is important across diverse members of the holozoan clade. Therefore, this phenotype was plausibly integral to the life cycles of the unicellular ancestors of animals.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Department of Functional Genomics and Evolution, Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
- Department of Cell Biology and Infection and Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France
| | - Ria Q. Kidner
- Department of Chemistry, Indiana University, Bloomington, IN47405
| | - Catherine Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN47405
| | - W. Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH45221
| | - Iñaki Ruiz-Trillo
- Department of Functional Genomics and Evolution, Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010Barcelona, Spain
| | - Joseph P. Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN47405
| |
Collapse
|
8
|
Bajgar A, Krejčová G. On the origin of the functional versatility of macrophages. Front Physiol 2023; 14:1128984. [PMID: 36909237 PMCID: PMC9998073 DOI: 10.3389/fphys.2023.1128984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Macrophages represent the most functionally versatile cells in the animal body. In addition to recognizing and destroying pathogens, macrophages remove senescent and exhausted cells, promote wound healing, and govern tissue and metabolic homeostasis. In addition, many specialized populations of tissue-resident macrophages exhibit highly specialized functions essential for the function of specific organs. Sometimes, however, macrophages cease to perform their protective function and their seemingly incomprehensible response to certain stimuli leads to pathology. In this study, we address the question of the origin of the functional versatility of macrophages. To this end, we have searched for the evolutionary origin of macrophages themselves and for the emergence of their characteristic properties. We hypothesize that many of the characteristic features of proinflammatory macrophages evolved in the unicellular ancestors of animals, and that the functional repertoire of macrophage-like amoebocytes further expanded with the evolution of multicellularity and the increasing complexity of tissues and organ systems. We suggest that the entire repertoire of macrophage functions evolved by repurposing and diversification of basic functions that evolved early in the evolution of metazoans under conditions barely comparable to that in tissues of multicellular organisms. We believe that by applying this perspective, we may find an explanation for the otherwise counterintuitive behavior of macrophages in many human pathologies.
Collapse
Affiliation(s)
- Adam Bajgar
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Faculty of Science, Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia.,Biology Centre, Institute of Entomology, Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
9
|
Flensburg SB, Garm A, Funch P. The contraction-expansion behaviour in the demosponge Tethya wilhelma is light controlled and follows a diurnal rhythm. J Exp Biol 2022; 225:286159. [PMID: 36546534 DOI: 10.1242/jeb.244751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Sponges (phylum Porifera) are metazoans which lack muscles and nerve cells, yet perform coordinated behaviours such as whole-body contractions. Previous studies indicate diurnal variability in both the number of contractions and the expression of circadian clock genes. Here, we show that diurnal patterns are present in the contraction-expansion behaviour of the demosponge Tethya wilhelma, by using infrared videography and a simulated night/day cycle including sunrise and sunset mimics. In addition, we show that this behaviour is at least strongly influenced by ambient light intensity and therefore indicates light-sensing capabilities in this sponge species. This is supported by our finding that T. wilhelma consistently contracts at sunrise, and that this pattern disappears both when the sponge is kept in constant darkness and when it is in constant light.
Collapse
Affiliation(s)
- Sarah B Flensburg
- Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000 Aarhus C, Denmark
| | - Anders Garm
- Marine Biological Section, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| | - Peter Funch
- Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Melnikov NP, Bolshakov FV, Frolova VS, Skorentseva KV, Ereskovsky AV, Saidova AA, Lavrov AI. Tissue homeostasis in sponges: Quantitative analysis of cell proliferation and apoptosis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:360-381. [PMID: 35468249 DOI: 10.1002/jez.b.23138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Tissues of multicellular animals are maintained due to a tight balance between cell proliferation and programmed cell death. Sponges are early branching metazoans essential to understanding the key mechanisms of tissue homeostasis. This article is dedicated to the comparative analysis of proliferation and apoptosis in intact tissues of two sponges, Halisarca dujardinii (class Demospongiae) and Leucosolenia variabilis (class Calcarea). Labeled nucleotides EdU and anti-phosphorylated histone 3 antibodies reveal a considerable number of cycling cells in intact tissues of both species. Quantitative DNA staining reveals the classic cell cycle distribution curve. The main type of cycling cells are choanocytes - flagellated cells of the aquiferous system. The rate of proliferation remains constant throughout various areas of sponge bodies that contain choanocytes. The EdU tracking experiments conducted in H. dujardinii indicate that choanocytes may give rise to mesohyl cells through migration. The number of apoptotic cells in tissues of both species is insignificant, although being comparable to the renewing tissues of other animals. In vivo studies with tetramethylrhodamine ethyl ester and CellEvent Caspase-3/7 indicate that apoptosis might be independent of mitochondrial outer membrane permeabilization. Altogether, a combination of confocal laser scanning microscopy and flow cytometry provides a quantitative description of cell proliferation and apoptosis in sponges displaying either rapid growth or cell turnover.
Collapse
Affiliation(s)
- Nikolai P Melnikov
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Fyodor V Bolshakov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Veronika S Frolova
- Department of Embryology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniia V Skorentseva
- Department of Cell Biology and Histologym, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V Ereskovsky
- Laboratory "Diversity and Functioning: from Molecules to Ecosystems", Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d'Endoume, Avignon University, Marseille, France
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Alina A Saidova
- Department of Cell Biology and Histologym, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biotechnology, Center of Experimental Embryology and Reproductive Biotechnology, Moscow, Russia
| | - Andrey I Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
MRTF specifies a muscle-like contractile module in Porifera. Nat Commun 2022; 13:4134. [PMID: 35840552 PMCID: PMC9287330 DOI: 10.1038/s41467-022-31756-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle-based movement is a hallmark of animal biology, but the evolutionary origins of myocytes are unknown. Although believed to lack muscles, sponges (Porifera) are capable of coordinated whole-body contractions that purge debris from internal water canals. This behavior has been observed for decades, but their contractile tissues remain uncharacterized with respect to their ultrastructure, regulation, and development. We examine the sponge Ephydatia muelleri and find tissue-wide organization of a contractile module composed of actin, striated-muscle myosin II, and transgelin, and that contractions are regulated by the release of internal Ca2+ stores upstream of the myosin-light-chain-kinase (MLCK) pathway. The development of this contractile module appears to involve myocardin-related transcription factor (MRTF) as part of an environmentally inducible transcriptional complex that also functions in muscle development, plasticity, and regeneration. As an actin-regulated force-sensor, MRTF-activity offers a mechanism for how the contractile tissues that line water canals can dynamically remodel in response to flow and can re-form normally from stem-cells in the absence of the intrinsic spatial cues typical of animal embryogenesis. We conclude that the contractile module of sponge tissues shares elements of homology with contractile tissues in other animals, including muscles, indicating descent from a common, multifunctional tissue in the animal stem-lineage. Myocytes are a key cell type that enable animal movement, but their evolutionary origins remain unclear. Colgren and Nichols describe molecular and functional similarities between a contractile module in tissues of a sponge and muscle tissues in other animals, indicating a common evolutionary origin.
Collapse
|
12
|
Marine Sponge Endosymbionts: Structural and Functional Specificity of the Microbiome within
Euryspongia arenaria
Cells. Microbiol Spectr 2022; 10:e0229621. [PMID: 35499324 PMCID: PMC9241883 DOI: 10.1128/spectrum.02296-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sponge microbiomes are typically profiled by analyzing the community DNA of whole tissues, which does not distinguish the taxa residing within sponge cells from extracellular microbes. To uncover the endosymbiotic microbiome, we separated the sponge cells to enrich the intracellular microbes. The intracellular bacterial community of sponge Euryspongia arenaria was initially assessed by amplicon sequencing, which indicated that it hosts three unique phyla not found in the extracellular and bulk tissue microbiomes. These three phyla account for 66% of the taxonomically known genera in the intracellular microbiome. The shotgun metagenomic analysis extended the taxonomic coverage to viruses and eukaryotes, revealing the most abundant signature taxa specific to the intracellular microbiome. Functional KEGG pathway annotation demonstrated that the endosymbiotic microbiome hosted the greatest number of unique gene orthologs. The pathway profiles distinguished the intra- and extracellular microbiomes from the tissue and seawater microbiomes. Carbohydrate-active enzyme analysis further discriminated each microbiome based on their representative and dominant enzyme families. One pathway involved in digestion system and family esterase had a consistently higher level in intracellular microbiome and could statistically differentiate the intracellular microbiome from the others, suggesting that triacylglycerol lipases could be the key functional component peculiar to the endosymbionts. The identified higher abundance of lipase-related eggNOG categories further supported the lipid-hydrolyzing metabolism of endosymbiotic microbiota. Pseudomonas members, reported as lipase-producing bacteria, were only in the endosymbiotic microbiome, meanwhile Pseudomonas also showed a greater abundance intracellularly. Our study aided a comprehensive sponge microbiome that demonstrated the taxonomic and functional specificity of endosymbiotic microbiota. IMPORTANCE Sponges host abundant microbial symbionts that can produce an impressive number of novel bioactive metabolites. However, knowledge on intracellular (endosymbiotic) microbiota is scarce. We characterize the composition and function of the endosymbiotic microbiome by separation of sponge cells and enrichment of intracellular microbes. We uncover a noteworthy number of taxa exclusively in the endosymbiotic microbiome. We unlock the unique pathways and enzymes of endosymbiotic taxa. This study achieves a more comprehensive sponge microbial community profile, which demonstrates the structural and functional specificity of the endosymbiotic microbiome. Our findings not only open the possibility to reveal the low abundant and the likely missed microbiota when directly sequencing the sponge bulk tissues, but also warrant future in-depth exploration within single sponge cells.
Collapse
|
13
|
Borisenko I, Daugavet M, Ereskovsky A, Lavrov A, Podgornaya O. Novel protein from larval sponge cells, ilborin, is related to energy turnover and calcium binding and is conserved among marine invertebrates. Open Biol 2022; 12:210336. [PMID: 35193395 PMCID: PMC8864356 DOI: 10.1098/rsob.210336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sponges (phylum Porifera) are early-branching animals, whose outwardly simple body plan is underlain by a complex genetic repertoire. The transition from a mobile larva to an attached filter-feeding organism occurs by metamorphosis, a process accompanied by a radical change of the body plan and cell transdifferentiation. The continuity between larval cells and adult tissues is still obscure. In a previous study, we have produced polyclonal antibodies against the major protein of the flagellated cells covering the larva of the sponge Halisarca dujardini, used them to trace the fate of these cells and shown that the larval flagellated cells transdifferentiate into the choanocytes. In the present work, we identified the sequence of this novel protein, which we named ilborin. A search in the open databases showed that multiple orthologues of the newly identified protein are present in sponges, cnidarians, flatworms, ctenophores and echinoderms, but none of them has been described yet. Ilborin has two conserved domains: triosephosphate isomerase-barrel, which has enzymatic activity against macroergic compounds, and canonical EF-hand, which binds calcium. mRNA of ilborin is expressed in the larval flagellated cells. We suggest that the new protein is involved in the calcium-mediated regulation of energy metabolism, whose activation precedes metamorphosis.
Collapse
Affiliation(s)
- Ilya Borisenko
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Maria Daugavet
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia,Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Université d' Aix-Marseille, CNRS, IRD, Marseille, France,Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Podgornaya
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia,Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
14
|
Abstract
In his prominent book Regeneration (1901), T.H. Morgan's collected and synthesized theoretical and experimental findings from a diverse array of regenerating animals and plants. Through his endeavor, he introduced a new way to study regeneration and its evolution, setting a conceptual framework that still guides today's research and that embraces the contemporary evolutionary and developmental approaches.In the first part of the chapter, we summarize Morgan's major tenets and use it as a narrative thread to advocate interpreting regenerative biology through the theoretical tools provided by evolution and developmental biology, but also to highlight potential caveats resulting from the rapid proliferation of comparative studies and from the expansion of experimental laboratory models. In the second part, we review some experimental evo-devo approaches, highlighting their power and some of their interpretative dangers. Finally, in order to further understand the evolution of regenerative abilities, we portray an adaptive perspective on the evolution of regeneration and suggest a framework for investigating the adaptive nature of regeneration.
Collapse
Affiliation(s)
| | - Alexandre Alié
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France.
| |
Collapse
|
15
|
Kravchuk OI, Burakov AV, Gornostaev NG, Mikhailov KV, Adameyko KI, Finoshin AD, Georgiev AA, Mikhailov VS, Yeryukova YE, Rubinovsky GA, Zayts DV, Gazizova GR, Gusev OA, Shagimardanova EI, Lyupina YV. Histone Deacetylases in the Process of Halisarca dujardini Cell Reaggregation. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Vernale A, Prünster MM, Marchianò F, Debost H, Brouilly N, Rocher C, Massey-Harroche D, Renard E, Le Bivic A, Habermann BH, Borchiellini C. Evolution of mechanisms controlling epithelial morphogenesis across animals: new insights from dissociation-reaggregation experiments in the sponge Oscarella lobularis. BMC Ecol Evol 2021; 21:160. [PMID: 34418961 PMCID: PMC8380372 DOI: 10.1186/s12862-021-01866-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The ancestral presence of epithelia in Metazoa is no longer debated. Porifera seem to be one of the best candidates to be the sister group to all other Metazoa. This makes them a key taxon to explore cell-adhesion evolution on animals. For this reason, several transcriptomic, genomic, histological, physiological and biochemical studies focused on sponge epithelia. Nevertheless, the complete and precise protein composition of cell-cell junctions and mechanisms that regulate epithelial morphogenetic processes still remain at the center of attention. RESULTS To get insights into the early evolution of epithelial morphogenesis, we focused on morphogenic characteristics of the homoscleromorph sponge Oscarella lobularis. Homoscleromorpha are a sponge class with a typical basement membrane and adhaerens-like junctions unknown in other sponge classes. We took advantage of the dynamic context provided by cell dissociation-reaggregation experiments to explore morphogenetic processes in epithelial cells in a non-bilaterian lineage by combining fluorescent and electron microscopy observations and RNA sequencing approaches at key time-points of the dissociation and reaggregation processes. CONCLUSIONS Our results show that part of the molecular toolkit involved in the loss and restoration of epithelial features such as cell-cell and cell-matrix adhesion is conserved between Homoscleromorpha and Bilateria, suggesting their common role in the last common ancestor of animals. In addition, sponge-specific genes are differently expressed during the dissociation and reaggregation processes, calling for future functional characterization of these genes.
Collapse
Affiliation(s)
- Amélie Vernale
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Maria Mandela Prünster
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France
| | - Fabio Marchianò
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France
| | - Henry Debost
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Nicolas Brouilly
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
| | - Dominique Massey-Harroche
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Emmanuelle Renard
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France
| | - Bianca H Habermann
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France.
- Aix Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Turing Center for Living Systems (CENTURI), Marseille, France.
| | - Carole Borchiellini
- Aix Marseille Univ, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, Station Marine d'Endoume, Marseille, France.
| |
Collapse
|
17
|
Ereskovsky A, Borisenko IE, Bolshakov FV, Lavrov AI. Whole-Body Regeneration in Sponges: Diversity, Fine Mechanisms, and Future Prospects. Genes (Basel) 2021; 12:506. [PMID: 33805549 PMCID: PMC8066720 DOI: 10.3390/genes12040506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/08/2023] Open
Abstract
While virtually all animals show certain abilities for regeneration after an injury, these abilities vary greatly among metazoans. Porifera (Sponges) is basal metazoans characterized by a wide variety of different regenerative processes, including whole-body regeneration (WBR). Considering phylogenetic position and unique body organization, sponges are highly promising models, as they can shed light on the origin and early evolution of regeneration in general and WBR in particular. The present review summarizes available data on the morphogenetic and cellular mechanisms accompanying different types of WBR in sponges. Sponges show a high diversity of WBR, which principally could be divided into (1) WBR from a body fragment and (2) WBR by aggregation of dissociated cells. Sponges belonging to different phylogenetic clades and even to different species and/or differing in the anatomical structure undergo different morphogeneses after similar operations. A common characteristic feature of WBR in sponges is the instability of the main body axis: a change of the organism polarity is described during all types of WBR. The cellular mechanisms of WBR are different across sponge classes, while cell dedifferentiations and transdifferentiations are involved in regeneration processes in all sponges. Data considering molecular regulation of WBR in sponges are extremely scarce. However, the possibility to achieve various types of WBR ensured by common morphogenetic and cellular basis in a single species makes sponges highly accessible for future comprehensive physiological, biochemical, and molecular studies of regeneration processes.
Collapse
Affiliation(s)
- Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d’Endoume, Rue de la Batterie des Lions, Avignon University, 13007 Marseille, France
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia;
- Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ilya E. Borisenko
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia;
| | - Fyodor V. Bolshakov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, 119192 Moscow, Russia; (F.V.B.); (A.I.L.)
| | - Andrey I. Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, 119192 Moscow, Russia; (F.V.B.); (A.I.L.)
| |
Collapse
|
18
|
Rooney LM, Amos WB, Hoskisson PA, McConnell G. Intra-colony channels in E. coli function as a nutrient uptake system. THE ISME JOURNAL 2020; 14:2461-2473. [PMID: 32555430 PMCID: PMC7490401 DOI: 10.1038/s41396-020-0700-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
The ability of microorganisms to grow as aggregated assemblages has been known for many years, however their structure has remained largely unexplored across multiple spatial scales. The development of the Mesolens, an optical system which uniquely allows simultaneous imaging of individual bacteria over a 36 mm2 field of view, has enabled the study of mature Escherichia coli macro-colony biofilm architecture like never before. The Mesolens enabled the discovery of intra-colony channels on the order of 10 μm in diameter, that are integral to E. coli macro-colony biofilms and form as an emergent property of biofilm growth. These channels have a characteristic structure and re-form after total mechanical disaggregation of the colony. We demonstrate that the channels are able to transport particles and play a role in the acquisition of and distribution of nutrients through the biofilm. These channels potentially offer a new route for the delivery of dispersal agents for antimicrobial drugs to biofilms, ultimately lowering their impact on public health and industry.
Collapse
Affiliation(s)
- Liam M Rooney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - William B Amos
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Gail McConnell
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow East, Glasgow, G4 0NG, UK
| |
Collapse
|
19
|
Lavrov AI, Saidov DM, Bolshakov FV, Kosevich IA. Intraspecific variability of cell reaggregation during reproduction cycle in sponges. ZOOLOGY 2020; 140:125795. [DOI: 10.1016/j.zool.2020.125795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
|
20
|
Ereskovsky AV. In Search of the Ancestral Organization and Phylotypic Stage of Porifera. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360419060031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Markl JS, Müller WEG, Sereno D, Elkhooly TA, Kokkinopoulou M, Gardères J, Depoix F, Wiens M. A synthetic biology approach for the fabrication of functional (fluorescent magnetic) bioorganic–inorganic hybrid materials in sponge primmorphs. Biotechnol Bioeng 2020; 117:1789-1804. [DOI: 10.1002/bit.27310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Julia S. Markl
- Institute of Physiological Chemistry, University Medical CenterJohannes Gutenberg‐UniversityMainz Germany
| | - Werner E. G. Müller
- Institute of Physiological Chemistry, University Medical CenterJohannes Gutenberg‐UniversityMainz Germany
| | - Dayane Sereno
- Institute of Physiological Chemistry, University Medical CenterJohannes Gutenberg‐UniversityMainz Germany
| | - Tarek A. Elkhooly
- Institute of Physiological Chemistry, University Medical CenterJohannes Gutenberg‐UniversityMainz Germany
| | | | - Johan Gardères
- Institute of Physiological Chemistry, University Medical CenterJohannes Gutenberg‐UniversityMainz Germany
| | - Frank Depoix
- Institute of ZoologyJohannes Gutenberg‐UniversityMainz Germany
| | - Matthias Wiens
- Institute of Physiological Chemistry, University Medical CenterJohannes Gutenberg‐UniversityMainz Germany
| |
Collapse
|
22
|
Finoshin AD, Adameyko KI, Mikhailov KV, Kravchuk OI, Georgiev AA, Gornostaev NG, Kosevich IA, Mikhailov VS, Gazizova GR, Shagimardanova EI, Gusev OA, Lyupina YV. Iron metabolic pathways in the processes of sponge plasticity. PLoS One 2020; 15:e0228722. [PMID: 32084159 PMCID: PMC7034838 DOI: 10.1371/journal.pone.0228722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species.
Collapse
Affiliation(s)
- Alexander D. Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kim I. Adameyko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V. Mikhailov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oksana I. Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nicolay G. Gornostaev
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Victor S. Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Oleg A. Gusev
- Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN National Science Institute, Yokohama, Japan
| | - Yulia V. Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Ereskovsky AV, Tokina DB, Saidov DM, Baghdiguian S, Le Goff E, Lavrov AI. Transdifferentiation and mesenchymal-to-epithelial transition during regeneration in Demospongiae (Porifera). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:37-58. [PMID: 31725194 DOI: 10.1002/jez.b.22919] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Origin and early evolution of regeneration mechanisms remain among the most pressing questions in animal regeneration biology. Porifera have exceptional regenerative capacities and, as early Metazoan lineage, are a promising model for studying evolutionary aspects of regeneration. Here, we focus on reparative regeneration of the body wall in the Mediterranean demosponge Aplysina cavernicola. The epithelialization of the wound surface is completed within 2 days, and the wound is completely healed within 2 weeks. The regeneration is accompanied with the formation of a mass of undifferentiated cells (blastema), which consists of archaeocytes, dedifferentiated choanocytes, anucleated amoebocytes, and differentiated spherulous cells. The main mechanisms of A. cavernicola regeneration are cell dedifferentiation with active migration and subsequent redifferentiation or transdifferentiation of polypotent cells through the mesenchymal-to-epithelial transformation. The main cell sources of the regeneration are archaeocytes and choanocytes. At early stages of the regeneration, the blastema almost devoid of cell proliferation, but after 24 hr postoperation (hpo) and up to 72 hpo numerous DNA-synthesizing cells appear there. In contrast to intact tissues, where vast majority of DNA-synthesizing cells are choanocytes, all 5-ethynyl-2'-deoxyuridine-labeled cells in the blastema are mesohyl cells. Intact tissues, distant from the wound, retains intact level of cell proliferation during whole regeneration process. For the first time, the apoptosis was studied during the regeneration of sponges. Two waves of apoptosis were detected during A. cavernicola regeneration: The first wave at 6-12 hpo and the second wave at 48-72 hpo.
Collapse
Affiliation(s)
- Alexander V Ereskovsky
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d'Endoume, Rue de la Batterie des Lions, Avignon University, Marseille, France.,Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Daria B Tokina
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Aix Marseille University, CNRS, IRD, Station Marine d'Endoume, Rue de la Batterie des Lions, Avignon University, Marseille, France
| | - Danial M Saidov
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Emilie Le Goff
- ISEM, CNRS, EPHE, IRD, Université de Montpellier, Montpellier, France
| | - Andrey I Lavrov
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia.,Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
24
|
Colgren J, Nichols SA. The significance of sponges for comparative studies of developmental evolution. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e359. [PMID: 31352684 DOI: 10.1002/wdev.359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/27/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
Sponges, ctenophores, placozoans, and cnidarians have key evolutionary significance in that they bracket the time interval during which organized animal tissues were first assembled, fundamental cell types originated (e.g., neurons and myocytes), and developmental patterning mechanisms evolved. Sponges in particular have often been viewed as living surrogates for early animal ancestors, largely due to similarities between their feeding cells (choanocytes) with choanoflagellates, the unicellular/colony-forming sister group to animals. Here, we evaluate these claims and highlight aspects of sponge biology with comparative value for understanding developmental evolution, irrespective of the purported antiquity of their body plan. Specifically, we argue that sponges strike a different balance between patterning and plasticity than other animals, and that environmental inputs may have prominence over genetically regulated developmental mechanisms. We then present a case study to illustrate how contractile epithelia in sponges can help unravel the complex ancestry of an ancient animal cell type, myocytes, which sponges lack. Sponges represent hundreds of millions of years of largely unexamined evolutionary experimentation within animals. Their phylogenetic placement lends them key significance for learning about the past, and their divergent biology challenges current views about the scope of animal cell and developmental biology. This article is characterized under: Comparative Development and Evolution > Evolutionary Novelties Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Jeffrey Colgren
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Scott A Nichols
- Department of Biological Sciences, University of Denver, Denver, Colorado
| |
Collapse
|
25
|
Lavrov AI, Kosevich IA. Stolonial Movement: A New Type of Whole-Organism Behavior in Porifera. THE BIOLOGICAL BULLETIN 2018; 234:58-67. [PMID: 29694803 DOI: 10.1086/697113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sponges (phylum Porifera) traditionally are represented as inactive, sessile filter-feeding animals devoid of any behavior except filtering activity. However, different time-lapse techniques demonstrate that sponges are able to show a wide range of coordinated but slow whole-organism behavior. The present study concerns a peculiar type of such behavior in the psychrophilic demosponge Amphilectus lobatus: stolonial movement. During stolonial movement, sponges produce outgrowths (stolons) that crawl along a substrate with a speed of 4.4 ± 2.2 μm min-1 and branch, thus forming a complex net covering a considerable area of a substrate. This net is used by sponges to search for new points with appropriate environmental conditions for individual relocation. After such points are found, all cells of the parental sponge migrate through stolons, leaving a naked parental skeleton, forming one or several filial sponges in the new location. Thus, stolonial movement combines traits of crawling along the substrate and asexual reproduction. This behavior relies on massive cell dedifferentiation followed by coordinated cell migration to the point of new sponge body formation and their subsequent differentiation into specialized cell types.
Collapse
|
26
|
Coutinho CC, Rosa IDA, Teixeira JDDO, Andrade LR, Costa ML, Mermelstein C. Cellular migration, transition and interaction during regeneration of the sponge Hymeniacidon heliophila. PLoS One 2017; 12:e0178350. [PMID: 28542651 PMCID: PMC5444830 DOI: 10.1371/journal.pone.0178350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/11/2017] [Indexed: 11/18/2022] Open
Abstract
Sponges have a high capacity for regeneration and this process improves biomass production in some species, thus contributing to a solution for the biomass supply problem for biotechnological applications. The aim of this work is to characterize the dynamics of cell behavior during the initial stages of sponge regeneration, using bright-field microscopy, confocal microscopy and SEM. We focused on the first 20 h of regeneration, during which blastema formation and epithelium initialization occur. An innovative sponge organotypic culture of the regenerating internal region is described and investigated by confocal microscopy, cell transplantation and vital staining. Cell-cell interaction and cell density are shown to affect events in morphogenesis such as epithelial/mesenchymal and mesenchymal/epithelial transitions as well as distinct cell movements required for regeneration. Extracellular matrix was organized according to the morphogenetic process observed, with evidence for cell-signaling instructions and remodeling. These data and the method of organotypic culture described here provide support for the development of viable sponge biomass production.
Collapse
Affiliation(s)
- Cristiano C. Coutinho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ivone de Andrade Rosa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leonardo R. Andrade
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoel Luis Costa
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
27
|
Gardères J, Domart-Coulon I, Marie A, Hamer B, Batel R, Müller WEG, Bourguet-Kondracki ML. Purification and partial characterization of a lectin protein complex, the clathrilectin, from the calcareous sponge Clathrina clathrus. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:17-27. [PMID: 27113336 DOI: 10.1016/j.cbpb.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022]
Abstract
Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria.
Collapse
Affiliation(s)
- Johan Gardères
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France; Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Isabelle Domart-Coulon
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Arul Marie
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Bojan Hamer
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Renato Batel
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Marie-Lise Bourguet-Kondracki
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
28
|
Lavrov AI, Kosevich IA. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates. ACTA ACUST UNITED AC 2016; 325:158-77. [DOI: 10.1002/jez.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Andrey I. Lavrov
- Department of Invertebrate Zoology, Faculty of Biology; Lomonosov Moscow State University; Moscow Russia
| | - Igor A. Kosevich
- Department of Invertebrate Zoology, Faculty of Biology; Lomonosov Moscow State University; Moscow Russia
| |
Collapse
|
29
|
Ereskovsky AV, Chernogor LI, Belikov SI. Ultrastructural description of development and cell composition of primmorphs in the endemic Baikal sponge Lubomirskia baicalensis. ZOOMORPHOLOGY 2015. [DOI: 10.1007/s00435-015-0289-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Borisenko IE, Adamska M, Tokina DB, Ereskovsky AV. Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera). PeerJ 2015; 3:e1211. [PMID: 26336645 PMCID: PMC4556153 DOI: 10.7717/peerj.1211] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022] Open
Abstract
The ability to regenerate is widespread in the animal kingdom, but the regenerative capacities and mechanisms vary widely. To understand the evolutionary history of the diverse regeneration mechanisms, the regeneration processes must be studied in early-evolved metazoans in addition to the traditional bilaterian and cnidarian models. For this purpose, we have combined several microscopy techniques to study mechanisms of regeneration in the demosponge Halisarca dujardini. The objectives of this work are to detect the cells and morphogenetic processes involved in Halisarca regeneration. We show that in Halisarca there are three main sources of the new exopinacoderm during regeneration: choanocytes, archaeocytes and (rarely) endopinacocytes. Here we show that epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) occur during Halisarca regeneration. EMT is the principal mechanism during the first stages of regeneration, soon after the injury. Epithelial cells from damaged and adjacent intact choanocyte chambers and aquiferous canals assume mesenchymal phenotype and migrate into the mesohyl. Together with archaeocytes, these cells form an undifferentiated cell mass beneath of wound, which we refer to as a blastema. After the blastema is formed, MET becomes the principal mechanism of regeneration. Altogether, we demonstrate that regeneration in demosponges involves a variety of processes utilized during regeneration in other animals (e.g., cell migration, dedifferentiation, blastema formation) and points to the particular importance of transdifferentiation in this process. Further studies will be needed to uncover the molecular mechanisms governing regeneration in sponges.
Collapse
Affiliation(s)
- Ilya E. Borisenko
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Current affiliation: Research School of Biology, Australian National University, Canberra, Australia
| | - Daria B. Tokina
- Current affiliation: Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), CNRS, Aix Marseille Université, IRD, Avignon Université, Marseille, France
| | - Alexander V. Ereskovsky
- Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Current affiliation: Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), CNRS, Aix Marseille Université, IRD, Avignon Université, Marseille, France
| |
Collapse
|
31
|
Huete-Stauffer C, Valisano L, Gaino E, Vezzulli L, Cerrano C. Development of long-term primary cell aggregates from Mediterranean octocorals. In Vitro Cell Dev Biol Anim 2015; 51:815-26. [DOI: 10.1007/s11626-015-9896-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
|