1
|
Marchenkova MA, Boikova AS, Ilina KB, Konarev PV, Pisarevsky YV, Dyakova YA, Kovalchuk MV. The Relationship of Precursor Cluster Concentration in a Saturated Crystallization Solution to Long-Range Order During the Transition to the Solid Phase. Acta Naturae 2023; 15:58-68. [PMID: 37153505 PMCID: PMC10154781 DOI: 10.32607/actanaturae.11815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/11/2023] [Indexed: 05/09/2023] Open
Abstract
A model for the transition from disordered liquid state to the solid phase has been proposed based on establishing a correlation between the concentration of precursor clusters in a saturated solution and the features of solid phase formation. The validity of the model has been verified experimentally by simultaneously studying the oligomeric structure of lysozyme protein solutions and the peculiarities of solid phase formation from these solutions. It was shown that no solid phase is formed in the absence of precursor clusters (octamers) in solution; perfect monocrystals are formed at a small concentration of octamers; mass crystallization is observed with an increasing degree of supersaturation (and concentration of octamers); further increase in octamer concentration leads to the formation of an amorphous phase.
Collapse
Affiliation(s)
- M. A. Marchenkova
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
| | - A. S. Boikova
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
| | - K. B. Ilina
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
| | - P. V. Konarev
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
| | - Yu. V. Pisarevsky
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
| | - Yu. A. Dyakova
- National Research Centre “Kurchatov Institute”, Moscow, 123182 Russian Federation
| | - M. V. Kovalchuk
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, 119333 Russian Federation
- National Research Centre “Kurchatov Institute”, Moscow, 123182 Russian Federation
| |
Collapse
|
2
|
Dyakova YA, Kovalchuk MV. Protein Self-Assembly in Crystals and Films. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522050030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
The Role of Cations and Anions in the Formation of Crystallization Oligomers in Protein Solutions as Revealed by Combination of Small-Angle X-ray Scattering and Molecular Dynamics. CRYSTALS 2022. [DOI: 10.3390/cryst12060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
As is known from molecular dynamics simulation, lysozyme oligomers in crystallization solutions are most stable when taking into account as many precipitant ions as possible embedded in the corresponding crystal structure. Therefore, the number of precipitant ions associated with crystallographic oligomer models can play a role during the modeling of small-angle X-ray scattering (SAXS) data. This hypothesis has been tested in the present work. As a result, it turned out that the best fit quality to the experimental SAXS data is reached when using oligomers without precipitant ions at all or with embedded chlorine ions. Molecular dynamics (MD) simulation shows that the stability of crystallization oligomers depends on the consideration of anions and cations in oligomer structure. Thus, it is chlorine ions which stabilize dimer and octamers in lysozyme crystallization solution. As SAXS is more sensitive to the role of cations and MD shows the role of anions which are “light” for X-rays, it has been shown that precipitant cations most likely do not bind to monomers, but to already-formed oligomers.
Collapse
|
4
|
Identification of the Precursor Cluster in the Crystallization Solution of Proteinase K Protein by Molecular Dynamics Methods. CRYSTALS 2022. [DOI: 10.3390/cryst12040484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
It is known that precursor clusters appear in solution prior to protein crystallization. For proteinase K, as it was found by SAXS, such clusters are dimers, but the accuracy of the method did not allow for determining its type. In this work, the behavior of six possible types of precursor clusters was simulated by the molecular dynamics technique. Stability analysis revealed the most probable type of dimer formed in the proteinase K solution before its crystallization. SAXS data modelling also supported the MD calculations. The dynamics of this precursor cluster was modeled at three temperatures: 20, 30, and 40 °C. At 40 °C, an abnormal increase in the stability of the thermophilic proteinase K was found.
Collapse
|
5
|
Han Q, Binns J, Zhai J, Guo X, Ryan TM, Drummond CJ, Greaves TL. Insights on lysozyme aggregation in protic ionic liquid solvents by using small angle X-ray scattering and high throughput screening. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Marchenkova MA, Konarev PV, Boikova AS, Ilina KB, Pisarevsky YV, Kovalchuk MV. Influence of Chlorides of Mono- and Divalent Metals on the Oligomeric Composition of Lysozyme Crystallization Solutions and Further Crystal Growth. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The influence of the precipitant type (LiCl, NaCl, KCl, NiCl2, and CuCl2) on the formation of oligomers (dimers and octamers) in lysozyme crystallization solutions at two protein concentrations has been investigated by small-angle X-ray scattering (SAXS). The same solutions have been used to grow crystals in order to reveal the influence of the oligomeric composition on the crystal growth. The data obtained in this and previous studies on the influence of precipitant concentration yield an inversely proportional dependence of the total content of octamers and dimers on the cation atomic number, which is in agreement with the increase in the ion activity in the lyotropic series for Li+, Na+, and K+ and the increase in the ionic radius for Li+, Na+, K+, Ni2+, and Cu2+. It is shown that a decrease in the protein concentration in a crystallization solution leads to a decrease in octamer volume fraction at an invariable volume fraction of dimers and reduces the probability of crystal formation.
Collapse
|
7
|
Marchenkova MA, Kuranova IP, Timofeev VI, Boikova AS, Dorovatovskii PV, Dyakova YA, Ilina KB, Pisarevskiy YV, Kovalchuk MV. The binding of precipitant ions in the tetragonal crystals of hen egg white lysozyme. J Biomol Struct Dyn 2019; 38:5159-5172. [PMID: 31760865 DOI: 10.1080/07391102.2019.1696706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bonds between lysozyme molecules and precipitant ions in single crystals grown with chlorides of several metals are analysed on the basis of crystal structure data. Crystals of tetragonal hen egg lysozyme (HEWL) were grown with chlorides of several alkali and transition metals (LiCl, NaCl, KCl, NiCl2 and CuCl2) as precipitants and the three-dimensional structures were determined at 1.35 Å resolution by X-ray diffraction method. The positions of metal and chloride ions attached to the protein were located, divided into three groups and analysed. Some of them, in accordance with the recently proposed and experimentally confirmed crystal growth model, provide connections in protein dimers and octamers that are precursor clusters in the crystallization lysozyme solution. The first group, including Cu+2, Ni+2 and Na+1 cations, binds specifically to the protein molecule. The second group consists of metal and chloride ions bound inside the dimers and octamers. The third group of ions can participate in connections between the octamers that are suggested as building units during the crystal growth. The arrangement of chloride and metal ions associated with lysozyme molecule at all stages of the crystallization solution formation and crystal growth is discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Margarita A Marchenkova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Inna P Kuranova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Anastasiia S Boikova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | | | - Yulia A Dyakova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Kseniia B Ilina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Yury V Pisarevskiy
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Mikhail V Kovalchuk
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre "Kurchatov Institute", Moscow, Russian Federation.,The Faculty of Physics, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
8
|
Marchenkova MA, Konarev PV, Rakitina TV, Timofeev VI, Boikova AS, Dyakova YA, Ilina KB, Korzhenevskiy DA, Yu Nikolaeva A, Pisarevsky YV, Kovalchuk MV. Dodecamers derived from the crystal structure were found in the pre-crystallization solution of the transaminase from the thermophilic bacterium Thermobaculum terrenum by small-angle X-ray scattering. J Biomol Struct Dyn 2019; 38:2939-2944. [PMID: 31347457 DOI: 10.1080/07391102.2019.1649195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pre-crystallization solution of the transaminase from Thermobaculum terrenum (TaTT) has been studied by small-angle X-ray scattering (SAXS). Regular changes in the oligomeric composition of the protein were observed after the addition of the precipitant. Comparison of the observed oligomers with the crystal structure of TaTT (PDB ID 6GKR) shows that dodecamers may act as building blocks in the growth of transaminase single crystals. Correlating of these results to the similar X-ray studies of other proteins suggests that SAXS may be a valuable tool for searching optimum crystallization conditions. AbbreviationSAXSsmall-angle X-ray scatteringTatransaminaseTaTTtransaminase from Thermobaculum terrenumPLPpyridoxal-5'-phosphateR-PEAR-(þ)-1-phenylethylamineBCATbranched-chain amino acid aminotransferaseDAATD-aminoacid aminotransferaseR-TAR-amine:pyruvate transaminaseCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Margarita A Marchenkova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Petr V Konarev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Tatiana V Rakitina
- National Research Centre 'Kurchatov Institute', Moscow, Russian Federation.,Shemyakin - Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Hormonal Regulation Proteins, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Anastasiia S Boikova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Yulia A Dyakova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Kseniia B Ilina
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | | | - Alena Yu Nikolaeva
- National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Yurii V Pisarevsky
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
| | - Mikhail V Kovalchuk
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences, Moscow, Russian Federation.,National Research Centre 'Kurchatov Institute', Moscow, Russian Federation.,St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|