1
|
Li Y, Shi C, Wei D, Ding J, Xu N, Jin L, Wang L. Associations of soil bacterial diversity and function with plant diversity in Carex tussock wetland. Front Microbiol 2023; 14:1142052. [PMID: 37089570 PMCID: PMC10115198 DOI: 10.3389/fmicb.2023.1142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Some species of Carex can form tussocks, which are usually distributed in valleys and flood plains. The soil microbial community diversity and function of micro–habitats formed by tussocks are associated with plant diversity, and research on these associations can guide Carex tussock wetland restoration. In this study, we selected tussock wetlands dominated by Carex appendiculata, including natural wetlands (NW), artificially restored wetlands (ARW), and naturally restored wetlands (NRW), and investigated plant diversity. Soil samples were collected from the quadrats of each sample plot with the maximum (ma), median (me), and minimum (mi) plant Shannon index values, and high-throughput sequencing was used to analyze the bacterial community composition, diversity, and functions. The plant diversity indexes of neither ARW nor NRW significantly differed from that of NW, but the companion species in NRW were hygrophytes and mesophytes, in contrast to only hygrophytes serving as companion species in NW and ARW. The soil bacterial communities at the operational taxonomic unit level of the nine quadrats with different plant Shannon index values significantly (p < 0.01) differed. The relative abundances of the dominant phyla (Proteobacteria, Chloroflexi, and Bacteroidetes) and the dominant genera (Geobacter, Sideroxydans, and Clostridium except for unassigned genera) significantly (p < 0.05) differed under the different levels of plant diversity. The plant Shannon index, soil moisture content, total organic carbon, N, and P were significantly (p < 0.05 or p < 0.01) correlated with the bacterial Shannon index. The phylogenetic diversity of the bacterial community in NW was significantly (p < 0.0001) different from those in ARW and NRW, and that in ARW was also significantly (p < 0.05) different from that in NRW. The functional groups of bacterial communities associated with plant diversity. In the NWme, ARWme, and NRWme bacterial communities, the relative proportions of functional groups related to soil N cycle were higher, but those related to soil S and C cycles were lower. Considering the rehabilitation of both plant and microbial communities, the methods used for establishing the ARW are recommended for Carex tussock wetland restoration.
Collapse
Affiliation(s)
- Yan Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chuanqi Shi
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin, Heilongjiang, China
| | - Dan Wei
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Dan Wei,
| | - Junnan Ding
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin, Heilongjiang, China
| | - Nan Xu
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin, Heilongjiang, China
| | - Liang Jin
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Lei Wang,
| |
Collapse
|
2
|
Wang M, Xu S, Wang S, Chen C, Wang Y, Liu L. Responses of soil enzyme activities and bacterial community structure to different hydrological regimes during peatland restoration in the Changbai Mountain, northeast China. Front Microbiol 2022; 13:1005657. [PMID: 36118204 PMCID: PMC9478802 DOI: 10.3389/fmicb.2022.1005657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Appropriate hydrological management is critical for peatland restoration. An important prerequisite for peatland restoration is a recovery of soil biological processes. However, little is known about the effects of different hydrological management practices on soil biological processes during peatland restoration. In this study, the variations in soil properties, enzyme activities, and bacterial communities across different peatlands, namely natural peatland (NP), peatland restored under high water level (HR), peatland restored under alternating high-low water level (HLR), peatland restored under low water level (LR), and degraded peatland (DP), in the Changbai Mountains were investigated. Results showed that soil organic carbon, soil water content, and total nitrogen in NP were significantly higher than those in restored and degraded peatlands, and these soil properties in restored peatlands increased with the water level. The activities of soil hydrolases including β-1, 4-glucosidase, β-1, 4-n-acetylglucosidase, and acid phosphatase in NP were higher than in restored and degraded peatlands, while the activity of polyphenol oxidase in NP was the lowest. In restored peatlands, all measured enzyme activities decreased with the decline in water level. Both bacterial diversity and richness in NP were the lowest, while the highest diversity and richness were observed in HR. Redundancy analysis indicated that soil organic carbon, water level, soil water content, total nitrogen, and pH were the most important factors that affected the soil enzyme activities and bacterial community. Our findings give insight into the effects of different hydrological regimes on soil biological processes during peatland restoration. Maintaining a high water level early in the restoration process is more beneficial to restoring the ecological functions of peatlands than other hydrological regimes.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Shangqi Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
| | - Shengzhong Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, China
| | - Cong Chen
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Yuting Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Lei Liu
- Institute of Scientific and Technical Information of Jilin, Changchun, China
| |
Collapse
|
3
|
Liu Y, Shen X, Wang Y, Zhang J, Ma R, Lu X, Jiang M. Spatiotemporal Variation in Aboveground Biomass and Its Response to Climate Change in the Marsh of Sanjiang Plain. FRONTIERS IN PLANT SCIENCE 2022; 13:920086. [PMID: 35800612 PMCID: PMC9253693 DOI: 10.3389/fpls.2022.920086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The Sanjiang Plain has the greatest concentration of freshwater marshes in China. Marshes in this area play a key role in adjusting the regional carbon cycle. As an important quality parameter of marsh ecosystems, vegetation aboveground biomass (AGB) is an important index for evaluating carbon stocks and carbon sequestration function. Due to a lack of in situ and long-term AGB records, the temporal and spatial changes in AGB and their contributing factors in the marsh of Sanjiang Plain remain unclear. Based on the measured AGB, normalized difference vegetation index (NDVI), and climate data, this study investigated the spatiotemporal changes in marsh AGB and the effects of climate variation on marsh AGB in the Sanjiang Plain from 2000 to 2020. Results showed that the marsh AGB density and annual maximum NDVI (NDVImax) had a strong correlation, and the AGB density could be accurately calculated from a power function equation between NDVImax and AGB density (AGB density = 643.57 × NDVI max 4 . 2474 ). According to the function equation, we found that the AGB density significantly increased at a rate of 2.47 g·C/m2/a during 2000-2020 in marshes of Sanjiang Plain, with the long-term average AGB density of about 282.05 g·C/m2. Spatially, the largest increasing trends of AGB were located in the north of the Sanjiang Plain, and decreasing trends were mainly found in the southeast of the study area. Regarding climate impacts, the increase in precipitation in winter could decrease the marsh AGB, and increased temperatures in July contributed to the increase in the marsh AGB in the Sanjiang Plain. This study demonstrated an effective approach for accurately estimating the marsh AGB in the Sanjiang Plain using ground-measured AGB and NDVI data. Moreover, our results highlight the importance of including monthly climate properties in modeling AGB in the marshes of the Sanjiang Plain.
Collapse
Affiliation(s)
- Yiwen Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangjin Shen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yanji Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Rong Ma
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Mapping and Geographical Sciences, Liaoning Technical University, Fuxin, China
| | - Xianguo Lu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Ming Jiang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|