1
|
Chen S, Cao R, Xiang L, Li Z, Chen H, Zhang J, Feng X. Research progress in nucleus-targeted tumor therapy. Biomater Sci 2023; 11:6436-6456. [PMID: 37609783 DOI: 10.1039/d3bm01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The nucleus is considered the most important organelle in the cell as it plays a central role in controlling cell reproduction, metabolism, and the cell cycle. The successful delivery of drugs into the nucleus can achieve excellent therapeutic effects, which reveals the potential of nucleus-targeted therapy in precision medicine. However, the transportation of therapeutics into the nucleus remains a significant challenge due to various biological barriers. Herein, we summarize the recent progress in the nucleus-targeted drug delivery system (NDDS). The structures of the nucleus and nuclear envelope are first described in order to understand the mechanisms by which drugs cross the nuclear envelope. Then, various drug delivery strategies based on the mechanisms and their applications are discussed. Finally, the challenges and solutions in the field of nucleus-targeted drug delivery are raised for developing a more efficient NDDS and promoting its clinical transformation.
Collapse
Affiliation(s)
- Shaofeng Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Rumeng Cao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ling Xiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ziyi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Jiumeng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
2
|
Lan W, Wang Z, Liu J, Liu H. Methionyl-Methionine Exerts Anti-Inflammatory Effects through the JAK2-STAT5-NF-κB and MAPK Signaling Pathways in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13742-13750. [PMID: 33183007 DOI: 10.1021/acs.jafc.0c05962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Methionyl-methionine (Met-Met) is a functional dipeptide. Although the role of a dipeptide in milk protein synthesis is clearly established, whether Met-Met has an anti-inflammatory effect and a protective mechanism in bovine mammary epithelial cell (MAC-T) inflammation remains unknown. The purpose of this study was to determine the beneficial effects and underlying mechanisms of Met-Met on lipopolysaccharide (LPS)-induced MAC-T cell inflammation. RNA-seq, siRNA interference, and western blotting were performed to determine the anti-inflammatory mechanisms of Met-Met in the context of LPS exposure. Pretreatment with 2 mM Met-Met could reduce the increase in TNF-α (3.14 ± 0.55 vs 1.54 ± 0.26, P < 0.01), IL-1β (2.30 ± 0.21 vs 1.86 ± 0.11, P < 0.05), and IL-8 (3.49 ± 0.29 vs 0.62 ± 0.20, P < 0.01) after 1 μg/mL LPS exposure. RNA-seq analyses indicated that the overlapping genes were primarily enriched in the nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), and IL-17 pathways. The suppression of NF-κB, P38, and JNK by Met-Met was mediated through the Janus kinase 2-signal transducers and activators of transcription 5 (JAK2-STAT5) pathway. Moreover, the Met-Met-mediated decrease in the LPS-induced activation of p-IκB, NF-κB, and JNK was reversed by knocking down JAK2. Collectively, Met-Met has beneficial effects on MAC-T cell inflammation by activating the JAK2-STAT5 pathway and then inhibiting the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Wei Lan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Liu X, Li Z, Wu W, Liu Y, Liu J, He Y, Wang X, Wang Z, Qi J, Yu H, Zhang Q. Sequencing-based network analysis provides a core set of gene resource for understanding kidney immune response against Edwardsiella tarda infection in Japanese flounder. FISH & SHELLFISH IMMUNOLOGY 2017; 67:643-654. [PMID: 28651821 DOI: 10.1016/j.fsi.2017.06.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Marine organisms are under a frequent threat from various pathogens. Edwardsiella tarda is one of the major fish pathogens infecting both cultured and wild fish species. It can also infect a variety of other vertebrates, including amphibians, reptiles, and mammals, and bacteremia caused by E. tarda can be fatal in humans. The kidney is the largest lymphoid organ in fish, and generating kidney transcriptomic information under different stresses is crucial for understanding molecular mechanisms underlying the immune responses in the kidneys. In this study, we performed transcriptome-wide gene expression profiling of the Japanese flounder (Paralichthys olivaceus) challenged by 8 and 48 h of E. tarda infection. An average of 40 million clean reads per library was obtained, and approximately 81.6% of these reads were successfully mapped to the reference genome. In addition, 1319 and 4439 differentially expressed genes (DEGs) were found at 8 and 48 h post-injection, respectively. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to search immune-related DEGs. A protein-protein interaction network was constructed to ascertain the relationship between interacting immune genes during pathogen-induced stress. Based on the KEGG and protein association networks analysis, 24 hub genes were discovered and validated by qRT-PCR. To our knowledge, this study is the first to represent the kidney transcriptome analysis based on protein-protein interaction networks in fish. Our results provide valuable gene resources for further research on kidney immune response in fish, which can significantly improve our understanding of the molecular mechanisms underlying the immune response to E. tarda in humans and other vertebrates.
Collapse
Affiliation(s)
- Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zan Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Wenzhao Wu
- Department of Information Management, Peking University, Beijing 100871, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
4
|
Vakhitova YV, Farafontova EI, Zainullina LF, Vakhitov VA, Tsypysheva IP, Yunusov MS. [Search of (-)-Cytisine Derivatives as Potential Inhibitors of NF-κB and STAT1]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:336-45. [PMID: 26502610 DOI: 10.1134/s1068162015030103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Design and synthesis ofnew derivatives of (-)-cytisine with a wide spectrum of pharmacological activity, represents the potential therapeutic interest for development of drug candidates for neurodegenerative disorders, inflammatory diseases, and treatment of nicotine addiction. We used HEK293 cell line transiently transfected with N F-κB and STATI luciferase reporter constructs to screen the (-)-cytisine derivatives for their potency to modulate basal and induced NF-κB and STAT1 activity. Currently, NF-κB, STAT1 and components of their signaling pathways are considered as attractive targets for pharmacological intervention, primarily in chronic inflammation, cancer, autoimmune, neurodegenerative and infectious diseases. The library of compounds included the derivatives of (-)-cytisine with amino-, amide-, thio- and carboxamide groups at 3, 5 and 12 position of the starting molecule, as well as some bimolecular derivatives. Our experimental data revealed compounds with moderate activating as well as inhibitory effects for basal NF-κB and STATI activity (IC50 or EC50 values are mainly in the micromolar range). The structure-activity relationship analysis demonstrated that the character of activity (activation or inhibition of NFκ-B and STAT1) is determined by the topology of the substituents at the (-)-cytisine molecule, whereas the nature of the substituents mainly contributes to severity of the effect (introduction of aromatic and adamantyl substituents, as well as thionyl or keto groups are of the principal importance). When evaluating the effect of (-)-cytisine derivatives on activity of NF-κB and STATI, induced by specific agents (TNFα and IFNγ, respectively) we observed that some compounds inhibited basal and stimulated activity of NF-κB and STAT1, another compounds showed the dual effect (an increase of basal- and a decrease of stimulated NF-κB activity) and several compounds increase both basal and induced activity of NF-κB and STAT1. Thus, obtained results suggest that one of the possible mechanisms of biological action of (-)-cytisine derivatives is their ability to influence the components of NF-κB and STAT1-dependent signaling pathways.
Collapse
|