1
|
Lorca M, Cabezas D, Araque I, Terán A, Hernández S, Mellado M, Espinoza L, Mella J. Cancer and brassinosteroids: Mechanisms of action, SAR and future perspectives. Steroids 2023; 190:109153. [PMID: 36481216 DOI: 10.1016/j.steroids.2022.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022]
Abstract
Brassinosteroids are plant hormones whose main function is to stimulate plant growth. However, they have been studied for their biological applications in humans. Brassinosteroid compounds have displayed an important role in the study of cancer pathology and show potential for developing novel anticancer drugs. In this review we describe the relationship of brassinosteroids with cancer with focus on the last decade, the mechanisms of cytotoxic activity described to date, and a structure-activity relationship based on the available information.
Collapse
Affiliation(s)
- Marcos Lorca
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - David Cabezas
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Ileana Araque
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Andrés Terán
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Santiago Hernández
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile.
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2340000, Chile.
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile; Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile.
| |
Collapse
|
2
|
Barysevich MV, Laktsevich-Iskryk MV, Scherbakov AM, Salnikova DI, Andreeva OE, Sorokin DV, Shchegolev YY, Hurski AL, Zhabinskii VN, Khripach VA. Synthesis and biological activity of 21,22-cyclosteroids and their derivatives. Steroids 2022; 188:109135. [PMID: 36336105 DOI: 10.1016/j.steroids.2022.109135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Synthesis of 21,22-cyclosteroids has been achieved starting from pregnenolone acetate. The key transformation was the Kulinkovich reaction of 17-vinyl steroids with esters. The resulting cyclopropanols were further subjected to three-membered ring-opening under various conditions including to base-, palladium or visible light-promoted isomerization and cross-coupling reaction. A number of steroidal Δ2-6-ketones and 3β-hydroxy-Δ5-enes with functional groups at C-21 - C-23 have been synthesized via the 21,22-cyclosteroids. The antiproliferative and antihormonal activity of the obtained compounds on the cell lines of prostate (22Rv1) and breast (MCF-7) cancer was studied. The androgen receptor activity was assessed by reporter assay when the expression of signalling proteins was evaluated by immunoblotting. (20S,22R)-22-Acetoxy-21,22-cyclo-5α-cholest-5-ene with the moderate antiandrogenic potency revealed IC50 values of 18.4 ± 1.2 and 14.6 ± 1.4 µM against MCF-7 and 22Rv1 cells, respectively, and its effects on the expression of AR-V7, cyclin D1 and BCL2 were explored.
Collapse
Affiliation(s)
- Maryia V Barysevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st, 5/2, 220141 Minsk, Belarus
| | - Marharyta V Laktsevich-Iskryk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st, 5/2, 220141 Minsk, Belarus
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe shosse, 24, 115522 Moscow, Russia
| | - Diana I Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe shosse, 24, 115522 Moscow, Russia
| | - Olga E Andreeva
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe shosse, 24, 115522 Moscow, Russia
| | - Danila V Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe shosse, 24, 115522 Moscow, Russia
| | - Yuri Y Shchegolev
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe shosse, 24, 115522 Moscow, Russia
| | - Alaksiej L Hurski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st, 5/2, 220141 Minsk, Belarus
| | - Vladimir N Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st, 5/2, 220141 Minsk, Belarus.
| | - Vladimir A Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st, 5/2, 220141 Minsk, Belarus
| |
Collapse
|
3
|
Grabovec IP, Smolskaya SV, Baranovsky AV, Zhabinskii VN, Dichenko YV, Shabunya PS, Usanov SA, Strushkevich NV. Ligand-binding properties and catalytic activity of the purified human 24-hydroxycholesterol 7α-hydroxylase, CYP39A1. J Steroid Biochem Mol Biol 2019; 193:105416. [PMID: 31247323 DOI: 10.1016/j.jsbmb.2019.105416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/01/2022]
Abstract
Oxysterols are derivatives of cholesterol and biologically active molecules that are involved in a number of functions, including cholesterol homeostasis, immune response, embryogenic development and pathophysiology of neurodegenerative diseases. Enzymes catalyzing their synthesis and metabolism are of particular interest as potential or evaluated drug targets. Here we report for the first time biochemical analysis of purified human oxysterol 7α-hydroxylase selective for 24-hydroxycholesterol. Binding analyses indicated a tight binding of the oxysterols and estrone. Ligand screening revealed that CYP39A1 binds with high affinity antifungal drugs and prostate cancer drug galeterone (TOK-001). Site-directed mutagenesis of conserved Asn residue in the active site revealed its crucial role for protein folding and heme incorporation. Developed protocol for expression and purification enables further investigation of this hepatic enzyme as off-target in development of specific drugs targeting cytochrome P450 enzymes.
Collapse
Affiliation(s)
- I P Grabovec
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - S V Smolskaya
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A V Baranovsky
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - V N Zhabinskii
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - Y V Dichenko
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - P S Shabunya
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - S A Usanov
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus
| | - N V Strushkevich
- Institute of Bioorganic Chemistry NAS of Belarus, Minsk, Belarus.
| |
Collapse
|
4
|
Scherbakov AM, Zhabinskii VN, Khripach VA, Shcherbinin DS, Mekhtiev AR, Shchegolev YY, Savochka AP, Andreeva OE. Biological Evaluation of a New Brassinosteroid: Antiproliferative Effects and Targeting Estrogen Receptor
α
Pathways. Chem Biodivers 2019; 16:e1900332. [DOI: 10.1002/cbdv.201900332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Alexander M. Scherbakov
- Department of Experimental Tumor BiologyBlokhin N.N. National Medical Research Center of Oncology Ministry of Health of Russia Kashirskoe shosse 24 115522 Moscow Russia
| | - Vladimir N. Zhabinskii
- Institute of Bioorganic ChemistryNational Academy of Sciences of Belarus Kuprevich str. 5/2 220141 Minsk Belarus
| | - Vladimir A. Khripach
- Institute of Bioorganic ChemistryNational Academy of Sciences of Belarus Kuprevich str. 5/2 220141 Minsk Belarus
| | - Dmitrii S. Shcherbinin
- Institute of Biomedical Chemistry, 10 building 8 Pogodinskaya str. 119121 Moscow Russia
- Department of Molecular TechnologiesPirogov Russian National Research Medical University 117997 Moscow Russia
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 building 8 Pogodinskaya str. 119121 Moscow Russia
| | - Yuri Yu. Shchegolev
- Department of Experimental Tumor BiologyBlokhin N.N. National Medical Research Center of Oncology Ministry of Health of Russia Kashirskoe shosse 24 115522 Moscow Russia
| | - Aleh P. Savochka
- Institute of Bioorganic ChemistryNational Academy of Sciences of Belarus Kuprevich str. 5/2 220141 Minsk Belarus
| | - Olga E. Andreeva
- Department of Experimental Tumor BiologyBlokhin N.N. National Medical Research Center of Oncology Ministry of Health of Russia Kashirskoe shosse 24 115522 Moscow Russia
| |
Collapse
|
5
|
Zhabinskii VN, Osiyuk DA, Ermolovich YV, Chaschina NM, Dalidovich TS, Strnad M, Khripach VA. Synthesis of ergostane-type brassinosteroids with modifications in ring A. Beilstein J Org Chem 2017; 13:2326-2331. [PMID: 29181112 PMCID: PMC5687004 DOI: 10.3762/bjoc.13.229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/10/2017] [Indexed: 11/23/2022] Open
Abstract
Herein, we present a new strategy for the preparation of a broad range of brassinosteroid biosynthetic precursors/metabolites differing by the ring A fragment. The protocol is based on the use of readily available phytohormones of this class bearing a 2α,3α-diol moiety (epibrassinolide or epicastasterone) as starting materials. The required functionalities (Δ2-, 2α,3α- and 2β,3β-epoxy-, 2α,3β-, 2β,3α-, and 2β,3β-dihydroxy-, 3-keto-, 3α- and 3β-hydroxy-, 2α-hydroxy-3-keto-) were synthesized from 2α,3α-diols in a few simple steps (Corey-Winter reaction, epoxidation, oxidation, hydride reduction, etc.).
Collapse
Affiliation(s)
- Vladimir N Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st., 5/2, 220141 Minsk, Belarus
| | - Darya A Osiyuk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st., 5/2, 220141 Minsk, Belarus
| | - Yuri V Ermolovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st., 5/2, 220141 Minsk, Belarus
| | - Natalia M Chaschina
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st., 5/2, 220141 Minsk, Belarus
| | - Tatsiana S Dalidovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st., 5/2, 220141 Minsk, Belarus
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Vladimir A Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich st., 5/2, 220141 Minsk, Belarus
| |
Collapse
|
6
|
Kisselev PA, Panibrat OV, Sysa AR, Anisovich MV, Zhabinskii VN, Khripach VA. Flow-cytometric analysis of reactive oxygen species in cancer cells under treatment with brassinosteroids. Steroids 2017; 117:11-15. [PMID: 27343978 DOI: 10.1016/j.steroids.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
To explore the underlying mechanism of cancer cell growth inhibition by brassinosteroids (BS), reactive oxygen species (ROS) generation under treatment with 28-homocastasterone and its synthetic derivatives (22S,23S)-28-homocastasterone was measured in A549 human lung adenocarcinoma cells. BS induced ROS generation in A549 cells and their growth in a time and dose-dependent manner. The maximal effect was observed for (22S,23S)-28-homocastasterone which at 30μM concentration showed a 6-fold increase of ROS generation in comparison with the control.
Collapse
Affiliation(s)
- Pyotr A Kisselev
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus
| | - Olesya V Panibrat
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus
| | - Aliaksei R Sysa
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus
| | - Marina V Anisovich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus
| | - Vladimir N Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus.
| | - Vladimir A Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str., 5/2, 220141 Minsk, Belarus
| |
Collapse
|
7
|
Zhabinskii VN, Khripach NB, Khripach VA. Steroid plant hormones: effects outside plant kingdom. Steroids 2015; 97:87-97. [PMID: 25217849 DOI: 10.1016/j.steroids.2014.08.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/12/2014] [Accepted: 08/25/2014] [Indexed: 12/22/2022]
Abstract
Brassinosteroids (BS) are the first group of steroid-hormonal compounds isolated from and acting in plants. Among numerous physiological effects of BS growth stimulation and adaptogenic activities are especially remarkable. In this review, we provide evidence that BS possess similar types of activity also beyond plant kingdom at concentrations comparable with those for plants. This finding allows looking at steroids from a new point of view: how common are the mechanisms of steroid bioregulation in different types of organisms from protozoa to higher animals.
Collapse
Affiliation(s)
- Vladimir N Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich St., 5/2, 220141 Minsk, Belarus.
| | - Natalia B Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich St., 5/2, 220141 Minsk, Belarus
| | - Vladimir A Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich St., 5/2, 220141 Minsk, Belarus
| |
Collapse
|