1
|
Kanazhevskaya LY, Gorbunov AA, Lukina MV, Smyshliaev DA, Zhdanova PV, Lomzov AA, Koval VV. The Role of Key Amino Acids of the Human Fe(II)/2OG-Dependent Dioxygenase ALKBH3 in Structural Dynamics and Repair Activity toward Methylated DNA. Int J Mol Sci 2024; 25:1145. [PMID: 38256217 PMCID: PMC10816986 DOI: 10.3390/ijms25021145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Non-heme dioxygenases of the AlkB family hold a unique position among enzymes that repair alkyl lesions in nucleic acids. These enzymes activate the Fe(II) ion and molecular oxygen through the coupled decarboxylation of the 2-oxoglutarate co-substrate to subsequently oxidize the substrate. ALKBH3 is a human homolog of E. coli AlkB, which displays a specific activity toward N1-methyladenine and N3-methylcytosine bases in single-stranded DNA. Due to the lack of a DNA-bound structure of ALKBH3, the basis of its substrate specificity and structure-function relationships requires further exploration. Here we have combined biochemical and biophysical approaches with site-directed mutational analysis to elucidate the role of key amino acids in maintaining the secondary structure and catalytic activity of ALKBH3. Using stopped-flow fluorescence spectroscopy we have shown that conformational dynamics play a crucial role in the catalytic repair process catalyzed by ALKBH3. A transient kinetic mechanism, which comprises the steps of the specific substrate binding, eversion, and anchoring within the DNA-binding cleft, has been described quantitatively by rate and equilibrium constants. Through CD spectroscopy, we demonstrated that replacing side chains of Tyr143, Leu177, and His191 with alanine results in significant alterations in the secondary structure content of ALKBH3 and decreases the stability of mutant proteins. The bulky side chain of Tyr143 is critical for binding the methylated base and stabilizing its flipped-out conformation, while its hydroxyl group is likely involved in facilitating the product release. The removal of the Leu177 and His191 side chains substantially affects the secondary structure content and conformational flexibility, leading to the complete inactivation of the protein. The mutants lacking enzymatic activity exhibit a marked decrease in antiparallel β-strands, offset by an increase in the helical component.
Collapse
Affiliation(s)
- Lyubov Yu. Kanazhevskaya
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alexey A. Gorbunov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| | - Maria V. Lukina
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| | - Denis A. Smyshliaev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| | - Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| | - Alexander A. Lomzov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 8 Lavrentiev Ave., Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Peng Z, Ma J, Christov CZ, Karabencheva-Christova T, Lehnert N, Li D. Kinetic Studies on the 2-Oxoglutarate/Fe(II)-Dependent Nucleic Acid Modifying Enzymes from the AlkB and TET Families. DNA 2023; 3:65-84. [PMID: 38698914 PMCID: PMC11065319 DOI: 10.3390/dna3020005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Nucleic acid methylations are important genetic and epigenetic biomarkers. The formation and removal of these markers is related to either methylation or demethylation. In this review, we focus on the demethylation or oxidative modification that is mediated by the 2-oxoglutarate (2-OG)/Fe(II)-dependent AlkB/TET family enzymes. In the catalytic process, most enzymes oxidize 2-OG to succinate, in the meantime oxidizing methyl to hydroxymethyl, leaving formaldehyde and generating demethylated base. The AlkB enzyme from Escherichia coli has nine human homologs (ALKBH1-8 and FTO) and the TET family includes three members, TET1 to 3. Among them, some enzymes have been carefully studied, but for certain enzymes, few studies have been carried out. This review focuses on the kinetic properties of those 2-OG/Fe(II)-dependent enzymes and their alkyl substrates. We also provide some discussions on the future directions of this field.
Collapse
Affiliation(s)
- Zhiyuan Peng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jian Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Christo Z. Christov
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | | | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
3
|
Conformational Dynamics of Human ALKBH2 Dioxygenase in the Course of DNA Repair as Revealed by Stopped-Flow Fluorescence Spectroscopy. Molecules 2022; 27:molecules27154960. [PMID: 35956910 PMCID: PMC9370705 DOI: 10.3390/molecules27154960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Elucidation of physicochemical mechanisms of enzymatic processes is one of the main tasks of modern biology. High efficiency and selectivity of enzymatic catalysis are mostly ensured by conformational dynamics of enzymes and substrates. Here, we applied a stopped-flow kinetic analysis based on fluorescent spectroscopy to investigate mechanisms of conformational transformations during the removal of alkylated bases from DNA by ALKBH2, a human homolog of Escherichia coli AlkB dioxygenase. This enzyme protects genomic DNA against various alkyl lesions through a sophisticated catalytic mechanism supported by a cofactor (Fe(II)), a cosubstrate (2-oxoglutarate), and O2. We present here a comparative study of conformational dynamics in complexes of the ALKBH2 protein with double-stranded DNA substrates containing N1-methyladenine, N3-methylcytosine, or 1,N6-ethenoadenine. By means of fluorescent labels of different types, simultaneous detection of conformational transitions in the protein globule and DNA substrate molecule was performed. Fitting of the kinetic curves by a nonlinear-regression method yielded a molecular mechanism and rate constants of its individual steps. The results shed light on overall conformational dynamics of ALKBH2 and damaged DNA during the catalytic cycle.
Collapse
|
4
|
Schmidl D, Jonasson NSW, Menke A, Schneider S, Daumann L. Spectroscopic and in vitro investigations of Fe2+/α-Ketoglutarate-dependent enzymes involved in nucleic acid repair and modification. Chembiochem 2022; 23:e202100605. [PMID: 35040547 PMCID: PMC9401043 DOI: 10.1002/cbic.202100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Indexed: 11/08/2022]
Abstract
The activation of molecular oxygen for the highly selective functionalization and repair of DNA and RNA nucleobases is achieved by α-ketoglutarate (α-KG)/iron-dependent dioxygenases. Enzymes of special interest are the human homologs AlkBH of Escherichia coli EcAlkB and ten-eleven translocation (TET) enzymes. These enzymes are involved in demethylation or dealkylation of DNA and RNA, although additional physiological functions are continuously being revealed. Given their importance, studying enzyme-substrate interactions, turnover and kinetic parameters is pivotal for the understanding of the mode of action of these enzymes. Diverse analytical methods, including X-ray crystallography, UV/Vis absorption, electron paramagnetic resonance (EPR), circular dichroism (CD) and NMR spectroscopy have been employed to study the changes in the active site and the overall enzyme structure upon substrate, cofactor and inhibitor addition. Several methods are now available to assess activity of these enzymes. By discussing limitations and possibilities of these techniques for EcAlkB, AlkBH and TET we aim to give a comprehensive synopsis from a bioinorganic point of view, addressing researchers from different disciplines working in the highly interdisciplinary and rapidly evolving field of epigenetic processes and DNA/RNA repair and modification.
Collapse
Affiliation(s)
- David Schmidl
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Niko S W Jonasson
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Annika Menke
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Sabine Schneider
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen, Chemistry, GERMANY
| | - Lena Daumann
- Ludwig-Maximilians-Universität München, Department of Chemistry, Butenandtstr. 5-13, 81377, München, GERMANY
| |
Collapse
|