Smolyaninov IV, Fukin GK, Berberova NT, Poddel’sky AI. Triphenylantimony(V) Catecholates of the Type (3-RS-4,6-DBCat)SbPh
3-Catechol Thioether Derivatives: Structure, Electrochemical Properties, and Antiradical Activity.
Molecules 2021;
26:2171. [PMID:
33918799 PMCID:
PMC8069174 DOI:
10.3390/molecules26082171]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
A new series of triphenylantimony(V) 3-alkylthio/arylthio-substituted 4,6-di-tert-butylcatecholates of the type (3-RS-4,6-DBCat)SbPh3, where R = n-butyl (1), n-hexyl (2), n-octyl (3), cyclopentyl (4), cyclohexyl (5), benzyl (6), phenyl (7), and naphthyl-2 (8), were synthesized from the corresponding catechol thioethers and Ph3SbBr2 in the presence of a base. The crystal structures of 1, 2, 3, and 5 were determined by single-crystal X-ray analysis. The coordination polyhedron of 1-3 is better described as a tetragonal pyramid with a different degree of distortion, while that for 5- was a distorted trigonal bipyramid (τ = 0.014, 0.177, 0.26, 0.56, respectively). Complexes demonstrated different crystal packing of molecules. The electrochemical oxidation of the complexes involved the catecholate group as well as the thioether linker. The introduction of a thioether fragment into the aromatic ring of catechol ligand led to a shift in the potential of the "catechol/o-semiquinone" redox transition to the anodic region, which indicated the electron-withdrawing nature of the RS group. The radical scavenging activity of the complexes was determined in the reaction with DPPH radical.
Collapse