1
|
Hawas SS, El-Sayed SM, Elzahhar PA, Moustafa MA. New 2-alkoxycyanopyridine derivatives as inhibitors of EGFR, HER2, and DHFR: Synthesis, anticancer evaluation, and molecular modeling studies. Bioorg Chem 2023; 141:106874. [PMID: 37769524 DOI: 10.1016/j.bioorg.2023.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
New series of substituted 2-alkoxycyanopyridine derivatives were synthesized and evaluated for their in vitro and in vivo anticancer activities. Comparing the evaluated activities against cancer cell lines to the broad-spectrum anticancer doxorubicin, and the kinase inhibitor sorafenib, compounds 3a, 4b, 4c, 7a, and 8d demonstrated superior anticancer efficacy with elevated safety profiles and selectivity indices, particularly against MCF7 breast cancer. For exploration of their mechanism of action, assays for inhibition of EGFR, HER2 kinase, and DHFR were performed. The promising synthesized compounds exhibited potent dual kinase EGFR/HER2 inhibitory activity with IC50values of 0.248/0.156 μM for 4b and 0.138/0.092 μM for 4c. Additionally, with IC50 values of 0.138 and 0.193 M, respectively, 4b and 4c had the greatest DHFR inhibitory activity that was comparable to methotrexate. In the MCF7 breast cancer cell line, they caused arrest at the S phase of the cell cycle and exhibited apoptosis induction activity. With restored caspase-3 immunoexpression, the anti-breast cancer assay performed in vivo of 4b and 4c demonstrated a substantial decrease in tumor volume. Results from molecular modeling were in agreement with biological assays proving the importance of the 3-caynopyridine, two substituted phenyl rings attached to central pyridine ring, and propoxy side chain moieties for binding with the receptors. As 4c works by inhibiting both EGFR/HER2 kinase, DHFR enzymes, in addition to cellular apoptosis, it could be viewed as a model of compounds possessing a multi-targeting anticancer activity. Collectively, compounds 4b and 4c might represent prototypes for further development as anticancer molecules.
Collapse
Affiliation(s)
- Samia S Hawas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed A Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Abu Lila AS, Amran M, Tantawy MA, Moglad EH, Gad S, Alotaibi HF, Obaidullah AJ, Khafagy ES. In Vitro Cytotoxicity and In Vivo Antitumor Activity of Lipid Nanocapsules Loaded with Novel Pyridine Derivatives. Pharmaceutics 2023; 15:1755. [PMID: 37376202 DOI: 10.3390/pharmaceutics15061755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study demonstrates high drug-loading of novel pyridine derivatives (S1-S4) in lipid- and polymer-based core-shell nanocapsules (LPNCs) for boosting the anticancer efficiency and alleviating toxicity of these novel pyridine derivatives. The nanocapsules were fabricated using a nanoprecipitation technique and characterized for particle size, surface morphology, and entrapment efficiency. The prepared nanocapsules exhibited a particle size ranging from 185.0 ± 17.4 to 223.0 ± 15.3 nm and a drug entrapment of >90%. The microscopic evaluation demonstrated spherical-shaped nanocapsules with distinct core-shell structures. The in vitro release study depicted a biphasic and sustained release pattern of test compounds from the nanocapsules. In addition, it was obvious from the cytotoxicity studies that the nanocapsules showed superior cytotoxicity against both MCF-7 and A549 cancer cell lines, as manifested by a significant decrease in the IC50 value compared to free test compounds. The in vivo antitumor efficacy of the optimized nanocapsule formulation (S4-loaded LPNCs) was investigated in an Ehrlich ascites carcinoma (EAC) solid tumor-bearing mice model. Interestingly, the entrapment of the test compound (S4) within LPNCs remarkably triggered superior tumor growth inhibition when compared with either free S4 or the standard anticancer drug 5-fluorouracil. Such enhanced in vivo antitumor activity was accompanied by a remarkable increase in animal life span. Furthermore, the S4-loaded LPNC formulation was tolerated well by treated animals, as evidenced by the absence of any signs of acute toxicity or alterations in biochemical markers of liver and kidney functions. Collectively, our findings clearly underscore the therapeutic potential of S4-loaded LPNCs over free S4 in conquering EAC solid tumors, presumably via granting efficient delivery of adequate concentrations of the entrapped drug to the target site.
Collapse
Affiliation(s)
- Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Amran
- Department of Pharmacy, Faculty of Health Sciences, Thamar University, Thamar 87246, Yemen
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan 62001, Iraq
| | - Mohamed A Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ehssan H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
3
|
Mohamed SF, Elnaggar DH, Elsayed MA, Abd-Elghaffar HS, Hosny HM, Mohamed AM, Abbas EMH, Farghaly TA, El-Awady RA. Synthesis, Anticancer Activity, Pharmacokinetics, and Docking Study of Some New Heterocycles Linked Indole Moiety. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2151475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Salwa F. Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Dina H. Elnaggar
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A. Elsayed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Hana M. Hosny
- Pesticide Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Ashraf M. Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Eman M. H. Abbas
- Department of Chemistry, Natural and Microbial Products, National Research Center, Dokki, Cairo, Egypt
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Giza, Egypt
| | - Raafat A. El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
In silico studies, synthesis and anticancer activity of novel diphenyl ether-based pyridine derivatives. Mol Divers 2018; 23:541-554. [PMID: 30430400 DOI: 10.1007/s11030-018-9889-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
Abstract
A series of novel 2-amino-4-(3-hydroxy-4-phenoxyphenyl)-6-(4-substituted phenyl) nicotinonitriles were synthesized and evaluated against HepG2, A-549 and Vero cell lines. Compounds 3b (IC50 16.74 ± 0.45 µM) and 3p (IC50 10.57 ± 0.54 µM) were found to be the most active compounds against A-549 cell line among the evaluated compounds. Further 3b- and 3p-induced apoptosis was characterized by AO/EB (acridine orange/ethidium bromide) nuclear staining method and also by DNA fragmentation study. A decrease in cell viability and initiation of apoptosis was clearly evident through the morphological changes in the A-549 cells treated with 3b and 3p when stained with this method. Fragmentation of DNA into nucleosomes was observed which further confirmed the cell apoptosis in cells treated with compound 3b. Flow cytometry studies confirmed the cell cycle arrest at G2/M phase in A549 cells treated with compound 3b. Further in silico studies performed supported the in vitro anticancer activity of these compounds as depicted by dock score and binding energy values.
Collapse
|
5
|
Grenet E, Das A, Caramenti P, Waser J. Rhodium-catalyzed C-H functionalization of heteroarenes using indoleBX hypervalent iodine reagents. Beilstein J Org Chem 2018; 14:1208-1214. [PMID: 29977388 PMCID: PMC6009173 DOI: 10.3762/bjoc.14.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022] Open
Abstract
The C–H indolation of heteroarenes was realized using the benziodoxolone hypervalent iodine reagents indoleBXs. Functionalization of the C–H bond in bipyridinones and quinoline N-oxides catalyzed by a rhodium complex allowed to incorporate indole rings into aza-heteroaromatic compounds. These new transformations displayed complete regioselectivity for the C-6 position of bipyridinones and the C-8 position of quinoline N-oxides and tolerated a broad range of functionalities, such as halogens, ethers, or trifluoromethyl groups.
Collapse
Affiliation(s)
- Erwann Grenet
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Ashis Das
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Paola Caramenti
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fedérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Liu J, Ming B, Gong GH, Wang D, Bao GL, Yu LJ. Current research on anti-breast cancer synthetic compounds. RSC Adv 2018. [DOI: 10.1039/c7ra12912b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the most common cancer for females and its incidence tends to increase year by year.
Collapse
Affiliation(s)
- Jia Liu
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Bian Ming
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Guo-Hua Gong
- First Clinical Medical of Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
| | - Di Wang
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Gui-Lan Bao
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Li-Jun Yu
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| |
Collapse
|
7
|
El-Sayed WA, Khalaf HS, Mohamed SF, Hussien HA, Kutkat OM, Amr AE. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217100279] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Amr AE, Abdalla MM, Essaouy SA, Areef MMH, Elgamal MH, Nassear TA, Haschich AE. Synthesis of some substituted 6,7-dihydro-4-methoxy-7-methyl-7-substituted-5-oxo-5H-furo[3,2-g]chromene-9-sulfonate derivatives as potent antihypertensive α-blocking and antiarrythmic agents. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217080308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Amr AE, Abdalla MM, Essaouy SA, Areef MMH, Elgamal MH, Nassear TA, Haschich AE, Al-Omar MA. Synthesis of some substituted 5H-furo[3,2-g]chromene and benzofuran sulfonate derivatives as potent anti-HIV agents. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217070246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Amr AE, Abdalla MM, Essaouy SA, Areef MMH, Elgamal MH, Nassear TA, Haschich AE. Synthesis of some substituted furo[3,2-g]chromeno[2,3-c]pyrazole and pyrazoline derivatives from 5-hydroxybergapten and 5-hydroxyisopimpinellin as EGFR and VEGFR-2 kinase inhibitors. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217070258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|