1
|
Caldevilla R, Morais SL, Cruz A, Delerue-Matos C, Moreira F, Pacheco JG, Santos M, Barroso MF. Electrochemical Chemically Based Sensors and Emerging Enzymatic Biosensors for Antidepressant Drug Detection: A Review. Int J Mol Sci 2023; 24:ijms24108480. [PMID: 37239826 DOI: 10.3390/ijms24108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Major depressive disorder is a widespread condition with antidepressants as the main pharmacological treatment. However, some patients experience concerning adverse reactions or have an inadequate response to treatment. Analytical chromatographic techniques, among other techniques, are valuable tools for investigating medication complications, including those associated with antidepressants. Nevertheless, there is a growing need to address the limitations associated with these techniques. In recent years, electrochemical (bio)sensors have garnered significant attention due to their lower cost, portability, and precision. Electrochemical (bio)sensors can be used for various applications related to depression, such as monitoring the levels of antidepressants in biological and in environmental samples. They can provide accurate and rapid results, which could facilitate personalized treatment and improve patient outcomes. This state-of-the-art literature review aims to explore the latest advancements in the electrochemical detection of antidepressants. The review focuses on two types of electrochemical sensors: Chemically modified sensors and enzyme-based biosensors. The referred papers are carefully categorized according to their respective sensor type. The review examines the differences between the two sensing methods, highlights their unique features and limitations, and provides an in-depth analysis of each sensor.
Collapse
Affiliation(s)
- Renato Caldevilla
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- REQUIMTE-LAQV, School of Engineering, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Stephanie L Morais
- REQUIMTE-LAQV, School of Engineering, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Agostinho Cruz
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, School of Engineering, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Fernando Moreira
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - João G Pacheco
- REQUIMTE-LAQV, School of Engineering, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Marlene Santos
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center, Portuguese Oncology Institute of Porto-Francisco Gentil, R. Dr. António Bernardino de Almeida 865, 4200-072 Porto, Portugal
| | - Maria Fátima Barroso
- REQUIMTE-LAQV, School of Engineering, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| |
Collapse
|
2
|
Mordkovich VZ, Karaeva AR, Kazennov NV, Mitberg EB, Nasraoui M, Kulnitskiy BA, Blank VD. Competitive Formation Zones in Carbon Nanotube Float-Catalysis Synthesis: Growth in Length vs. Growth Suppression. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7377. [PMID: 36295441 PMCID: PMC9609425 DOI: 10.3390/ma15207377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Catalytic synthesis of carbon nanotubes (CNT) produces numerous various byproducts such as soot, graphite platelets, catalyst nanoparticles, etc. Identification of the byproduct formation mechanisms would help develop routes to more selective synthesis of better carbon-based materials. This work reports on the identification of the formation zone and conditions for rather unusual closed multishell carbon nanocapsules in a reactor for float-catalysis synthesis of longer CNT. Structural investigation of the formed nanocapsule material along with computational fluid dynamics (CFD) simulations of the reactor suggested a nanocapsule formation mechanism, in which CNT embryos are suppressed in growth by the in-reactor turbulence. By means of TEM and FFT investigation, it is found that differently oriented single crystals of γ-Fe2O3, which do not have clear connections with each other, determine a spherical surface. The carbon atoms that seep through these joints do not form crystalline graphite layers. The resulting additional product in the form of graphene-coated (γ-Fe/Fe3C)/γ-Fe2O3 nanoparticles can be a lightweight and effective microwave absorber.
Collapse
Affiliation(s)
- Vladimir Z. Mordkovich
- Technological Institute for Superhard and Novel Carbon Materials, 7A Tsentralnaya street, Troitsk, 108840 Moscow, Russia
| | - Aida R. Karaeva
- Technological Institute for Superhard and Novel Carbon Materials, 7A Tsentralnaya street, Troitsk, 108840 Moscow, Russia
| | - Nikita V. Kazennov
- Technological Institute for Superhard and Novel Carbon Materials, 7A Tsentralnaya street, Troitsk, 108840 Moscow, Russia
| | - Eduard B. Mitberg
- Technological Institute for Superhard and Novel Carbon Materials, 7A Tsentralnaya street, Troitsk, 108840 Moscow, Russia
| | - Mariem Nasraoui
- Technological Institute for Superhard and Novel Carbon Materials, 7A Tsentralnaya street, Troitsk, 108840 Moscow, Russia
- Department of Electrochemistry, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Boris A. Kulnitskiy
- Technological Institute for Superhard and Novel Carbon Materials, 7A Tsentralnaya street, Troitsk, 108840 Moscow, Russia
| | - Vladimir D. Blank
- Technological Institute for Superhard and Novel Carbon Materials, 7A Tsentralnaya street, Troitsk, 108840 Moscow, Russia
| |
Collapse
|
3
|
Anboo S, Lau SY, Kansedo J, Yap P, Hadibarata T, Jeevanandam J, Kamaruddin AH. Recent advancements in enzyme-incorporated nanomaterials: Synthesis, mechanistic formation, and applications. Biotechnol Bioeng 2022; 119:2609-2638. [PMID: 35851660 PMCID: PMC9543334 DOI: 10.1002/bit.28185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
Over the past decade, nanotechnology has been developed and employed across various entities. Among the numerous nanostructured material types, enzyme-incorporated nanomaterials have shown great potential in various fields, as an alternative to biologically derived as well as synthetically developed hybrid structures. The mechanism of incorporating enzyme onto a nanostructure depends on several factors including the method of immobilization, type of nanomaterial, as well as operational and environmental conditions. The prospects of enzyme-incorporated nanomaterials have shown promising results across various applications, such as biocatalysts, biosensors, drug therapy, and wastewater treatment. This is due to their excellent ability to exhibit chemical and physical properties such as high surface-to-volume ratio, recovery and/or reusability rates, sensitivity, response scale, and stable catalytic activity across wide operating conditions. In this review, the evolution of enzyme-incorporated nanomaterials along with their impact on our society due to its state-of-the-art properties, and its significance across different industrial applications are discussed. In addition, the weakness and future prospects of enzyme-incorporated nanomaterials were also discussed to guide scientists for futuristic research and development in this field.
Collapse
Affiliation(s)
- Shamini Anboo
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | - Sie Yon Lau
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | - Jibrail Kansedo
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | - Pow‐Seng Yap
- Department of Civil EngineeringXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| | - Tony Hadibarata
- Department of Chemical EngineeringFaculty of Engineering and Science, Curtin University MalaysiaMiriSarawakMalaysia
| | | | - Azlina H. Kamaruddin
- School of Chemical EngineeringUniversiti Sains MalaysiaSeberang Perai SelatanPenangMalaysia
| |
Collapse
|
4
|
Ali Ahmadi Diva, Fathi S, Chekin F. Determination of Fluvoxamine in Real Samples using Carbon Paste Electrode Modified by Electrodeposition of Nickel. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819080021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Svalova TS, Malysheva NN, Kozitsina AN. Structure of the receptor layer in electrochemical immunosensors. Modern trends and prospects of development. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1951-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
El Harrad L, Bourais I, Mohammadi H, Amine A. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications. SENSORS (BASEL, SWITZERLAND) 2018; 18:E164. [PMID: 29315246 PMCID: PMC5795370 DOI: 10.3390/s18010164] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
A large number of enzyme inhibitors are used as drugs to treat several diseases such as gout, diabetes, AIDS, depression, Parkinson's and Alzheimer's diseases. Electrochemical biosensors based on enzyme inhibition are useful devices for an easy, fast and environment friendly monitoring of inhibitors like drugs. In the last decades, electrochemical biosensors have shown great potentials in the detection of different drugs like neostigmine, ketoconazole, donepezil, allopurinol and many others. They attracted increasing attention due to the advantage of being high sensitive and accurate analytical tools, able to reach low detection limits and the possibility to be performed on real samples. This review will spotlight the research conducted in the past 10 years (2007-2017) on inhibition based enzymatic electrochemical biosensors for the analysis of different drugs. New assays based on novel bio-devices will be debated. Moreover, the exploration of the recent graphical approach in diagnosis of reversible and irreversible inhibition mechanism will be discussed. The accurate and the fast diagnosis of inhibition type will help researchers in further drug design improvements and the identification of new molecules that will serve as new enzyme targets.
Collapse
Affiliation(s)
- Loubna El Harrad
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| | - Ilhame Bourais
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Technology, Hassan II University of Casablanca, Mohammadia B.P.146, Morocco.
| |
Collapse
|
7
|
Medyantseva EP, Brusnitsyn DV, Varlamova RM, Maksimov AA, Konovalova OA, Budnikov HC. Surface modification of electrodes by carbon nanotubes and gold and silver nanoparticles in monoaminoxidase biosensors for the determination of some antidepressants. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817040086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Medyantseva EP, Brusnitsyn DV, Varlamova RM, Medvedeva OI, Kutyreva MP, Ulakhovich NA, Fattakhova AN, Konovalova OA, Budnikov GK. Hyperbranched polyesterpolyols as components of amperometric monoamine oxidase biosensors based on electrodes modified with nanomaterials for determination of antidepressants. RUSS J APPL CHEM+ 2017. [DOI: 10.1134/s1070427217010153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|