1
|
Solovov R, Orlichenia V, Ershov B. Iron Nanoparticles In Isopropyl Alcohol: Preparation And Properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Vasil'kov A, Batsalova T, Dzhambazov B, Naumkin A. XPS study of silver and copper nanoparticles demonstrated selective anticancer, proapoptotic, and antibacterial properties. SURF INTERFACE ANAL 2021. [DOI: 10.1002/sia.7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Vasil'kov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Moscow Russia
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology Plovdiv University Plovdiv Bulgaria
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology Plovdiv University Plovdiv Bulgaria
| | - Alexander Naumkin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Moscow Russia
| |
Collapse
|
3
|
Lisichkin GV, Olenin AY. Chemically Modified Silica in Sorption-Instrumental Analytical Methods. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221050182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Eremina OE, Samodelova MV, Ferree MV, Shekhovtsova TN, Veselova IA. Capturing polycyclic aromatic sulfur heterocycles in electron donor–acceptor complexes. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Eremina OE, Samodelova MV, Ferree MV, Shekhovtsova TN, Veselova IA. Capturing polycyclic aromatic sulfur heterocycles in electron donor–acceptor complexes. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Application of biosynthesized metal nanoparticles in electrochemical sensors. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2021. [DOI: 10.2298/jsc200521077d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recently, the development of eco-friendly, cost-effective and reliable methods for synthesis of metal nanoparticles has drawn a considerable attention. The so-called green synthesis, using mild reaction conditions and natural resources as plant extracts and microorganisms, has established as a convenient, sustainable, cheap and environmentally safe approach for synthesis of a wide range of nanomaterials. Over the past decade, biosynthesis is regarded as an important tool for reducing the harmful effects of traditional nanoparticle synthesis methods commonly used in laboratories and industry. This review emphasizes the significance of biosynthesized metal nanoparticles in the field of electrochemical sensing. There is increasing evidence that green synthesis of nanoparticles provides a new direction in designing of cost-effective, highly sensitive and selective electrode-catalysts applicable in food, clinical and environmental analysis. The article is based on 157 references and provided a detailed overview on the main approaches for green synthesis of metal nanoparticles and their applications in designing of electrochemical sensor devices. Important operational characteristics including sensitivity, dynamic range, limit of detection, as well as data on stability and reproducibility of sensors have also been covered.
Collapse
|
7
|
Olenin AY. Changes in Spectral Properties of Aqueous Silver Sols Induced by Complexation on the Surface of Nanoparticles. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620040154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|