1
|
Kull T, Wiesmann T, Wilmsen A, Purcel M, Muhler M, Lohmann H, Zeidler-Fandrich B, Apfel UP. Influence of the ZnCrAl Oxide Composition on the Formation of Hydrocarbons from Syngas. ACS OMEGA 2022; 7:42994-43005. [PMID: 36467945 PMCID: PMC9713791 DOI: 10.1021/acsomega.2c05225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
The conversion of syngas into value-added hydrocarbons gains increasing attention due to its potential to produce sustainable platform chemicals from simple starting materials. Along this line, the "OX-ZEO" process that combines a methanol synthesis catalyst with a zeolite, capable of catalyzing the methanol-to-hydrocarbon reaction, was found to be a suitable alternative to the classical Fischer-Tropsch synthesis. Hitherto, understanding the mechanism of the OX-ZEO process and simultaneously optimizing the CO conversion and the selectivity toward a specific hydrocarbon remains challenging. Herein, we present a comparison of a variety of ZnCrAl oxides with different metal ratios combined with a H-ZSM-5 zeolite for the conversion of syngas to hydrocarbons. The effect of aluminum on the catalytic activity was investigated for ZnCrAl oxides with a Zn/Cr ratio of 4:1, 1:1, and 1:2. The product distribution and CO conversion were found to be strongly influenced by the Zn/Cr/Al ratio. Although a ratio of Zn/Cr of 1:2 was best to produce lower olefins and aromatics, with aromatic selectivities of up to 37%, catalysts with a 4:1 ratio revealed high paraffin selectivity up to 52%. Notably, a distinct effect of aluminum in the oxide lattice on the catalytic activity and product selectivity was observed, as a higher Al content leads to a lower CO conversion and a changed product spectrum. We provide additional understanding of the influence of different compositions of ZnCrAl oxides on their surface properties and the catalytic activity in the OX-ZEO process. Furthermore, the variation of the zeolite component supports the important role of the channel topology of the porous support material for the hydrocarbon production. In addition, variation of the gas hourly space velocity showed a correlation of contact time, CO conversion, and hydrocarbon selectivity. At a gas hourly space velocity of 4200 mL/gcat h, CO conversion as high as 44% along with a CO2 selectivity of 42% and a lower paraffin (C2 0-C4 0) selectivity of 41% was observed.
Collapse
Affiliation(s)
- Tobias Kull
- Inorganic
Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Thomas Wiesmann
- Fraunhofer
UMSICHT, Osterfelder
Straße 3, D-46047 Oberhausen, Germany
| | - Andrea Wilmsen
- Fraunhofer
UMSICHT, Osterfelder
Straße 3, D-46047 Oberhausen, Germany
| | - Maximilian Purcel
- Laboratory
of Industrial Chemistry, Ruhr-Universität
Bochum, Universitätsstraße
150, D-44780 Bochum, Germany
| | - Martin Muhler
- Laboratory
of Industrial Chemistry, Ruhr-Universität
Bochum, Universitätsstraße
150, D-44780 Bochum, Germany
| | - Heiko Lohmann
- Fraunhofer
UMSICHT, Osterfelder
Straße 3, D-46047 Oberhausen, Germany
| | | | - Ulf-Peter Apfel
- Inorganic
Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
- Fraunhofer
UMSICHT, Osterfelder
Straße 3, D-46047 Oberhausen, Germany
| |
Collapse
|
2
|
Temirova AM, Tuktin BT, Omarova AA, Aubakirov EA, Anisimov AV. Conversion of Light Hydrocarbons on Modified Zeolite Catalysts. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2022. [DOI: 10.1134/s0040579522310037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Pothu R, Gundeboyina R, Boddula R, Perugopu V, Ma J. Recent advances in biomass-derived platform chemicals to valeric acid synthesis. NEW J CHEM 2022. [DOI: 10.1039/d1nj05777d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A perspective overview for levulinic acid and/or γ-valerolactone to valeric acid synthesis via thermocatalytic and electrocatalytic systems has been summarized.
Collapse
Affiliation(s)
- Ramyakrishna Pothu
- School of Physics and Electronics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Raveendra Gundeboyina
- Energy & Environmental Engineering Department, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, Telangana state, India
| | - Rajender Boddula
- Energy & Environmental Engineering Department, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, Telangana state, India
| | - Vijayanand Perugopu
- Energy & Environmental Engineering Department, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, Telangana state, India
| | - Jianmin Ma
- School of Physics and Electronics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
4
|
Wei J, Yao R, Han Y, Ge Q, Sun J. Towards the development of the emerging process of CO 2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem Soc Rev 2021; 50:10764-10805. [PMID: 34605829 DOI: 10.1039/d1cs00260k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emerging process of CO2 hydrogenation through heterogenous catalysis into important bulk chemicals provides an alternative strategy for sustainable and low-cost production of valuable chemicals, and brings an important chance for mitigating CO2 emissions. Direct synthesis of the family of unsaturated heavy hydrocarbons such as α-olefins and aromatics via CO2 hydrogenation is more attractive and challenging than the production of short-chain products to modern society, suffering from the difficult control between C-O activation and C-C coupling towards long-chain hydrocarbons. In the past several years, rapid progress has been achieved in the development of efficient catalysts for the process and understanding of their catalytic mechanisms. In this review, we provide a comprehensive, authoritative and critical overview of the substantial progress in the synthesis of α-olefins and aromatics from CO2 hydrogenation via direct and indirect routes. The rational fabrication and design of catalysts, proximity effects of multi-active sites, stability and deactivation of catalysts, reaction mechanisms and reactor design are systematically discussed. Finally, current challenges and potential applications in the development of advanced catalysts, as well as opportunities of next-generation CO2 hydrogenation techniques for carbon neutrality in future are proposed.
Collapse
Affiliation(s)
- Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruwei Yao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Han
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|