1
|
Trometer N, Roignant M, Davioud-Charvet E. Efficient Multigram-Scale Synthesis of 7-Substituted 3-Methyltetral-1-ones and 6-Fluoromenadione. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nathan Trometer
- Laboratoire dʼInnovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), UMR7042 Université de Strasbourg−CNRS−UHA, 25 Rue Becquerel, Strasbourg 67087, France
| | - Matthieu Roignant
- Laboratoire dʼInnovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), UMR7042 Université de Strasbourg−CNRS−UHA, 25 Rue Becquerel, Strasbourg 67087, France
| | - Elisabeth Davioud-Charvet
- Laboratoire dʼInnovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), UMR7042 Université de Strasbourg−CNRS−UHA, 25 Rue Becquerel, Strasbourg 67087, France
| |
Collapse
|
2
|
Ivanov KS, Riesebeck T, Skolyapova A, Liakisheva I, Kazantsev MS, Sonina AA, Peshkov RY, Mostovich EA. P 2O 5-Promoted Cyclization of Di[aryl(hetaryl)methyl] Malonic Acids as a Pathway to Fused Spiro[4.4]nonane-1,6-Diones. J Org Chem 2022; 87:2456-2469. [PMID: 35166542 DOI: 10.1021/acs.joc.1c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conventional spiro-linked conjugated materials are attractive for organic optoelectronic applications due to the unique combination of their optical and electronic properties. However, spiro-linked conjugated materials with conjugation extension directed along the main axis of the molecule are still only rare examples among the vast number of spiro-linked conjugated materials. Herein, the synthesis, leading to π-extended spiro-linked conjugated materials─spiro[4.4]nonane-1,6-diones and spiro[5.5]undecane-1,7-diones─has been developed and optimized. The proposed design concept starts from readily available malonic esters and contains several steps: double alkylation of malonic ester with bromomethylaryl(hetaryl)s; conversion of a malonic ester into the corresponding malonic acid; electrophilic spirocyclization of the latter into the annulated spiro[4.4]nonane-1,6-dione or spiro[5.5]undecane-1,7-dione in the presence of phosphorus pentoxide. On the basis of these insights, the developed method yielded spiro-linked conjugated cores fused with benzene, thiophene, and naphthalene, decorated with active halogen atoms. The structures of the synthesized spirocycles were determined by single-crystal X-ray diffraction analysis. Benzene fused spiro[4.4]nonane-1,6-dione decorated with bromine atoms was transformed into V-shape phenylene-thiophene co-oligomer type spirodimers via Stille coupling. The spiro-bis(4-n-dodecylphenyl)-2,2'-bithiophene derivative possessed high photoluminescence properties in both solution and solid state with a photoluminescence quantum yield (PL QY) of 38%.
Collapse
Affiliation(s)
| | - Tim Riesebeck
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | | | - Irina Liakisheva
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Maxim S Kazantsev
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.,N. N. Vorozhtzov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev Ave, 9, Novosibirsk 630090, Russia
| | - Alina A Sonina
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.,N. N. Vorozhtzov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev Ave, 9, Novosibirsk 630090, Russia
| | - Roman Yu Peshkov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | | |
Collapse
|
3
|
Queiroz JE, Dias LD, Verde GMV, Aquino GLB, Camargo AJ. An Update on the synthesis and pharmacological properties of pyrazoles obtained from Chalcone. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220119110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
A review concerning the synthesis and pharmacological properties of pyrazoles obtained from Chalcone described in the literature over the last 5 years (2016-2020) was presented and discussed. Among the synthetic approaches for pyrazoles described so far, the cyclization and acetylation method of α,β-unsaturated chalcones and substituted hydrazine was selected and analyzed. 105 pyrazole derivatives (3-107) were evaluated as well as their pharmacological activities, namely, antineoplastic, anti-inflammatory, antioxidant, antibacterial, antifungal, antimycobacterial, antiplasmodial, Alzheimer's disease, enzymes inhibition (like acetylcholinesterase, carbonic anhydrase, and malonyl CoA decarboxylase), anticonvulsant, among others. Pyrazolic compounds are widely used in the new drugs design with a wide spectrum of pharmacological approaches, therefore, it is relevant to research the synthetic methods and therapeutic properties of different pyrazole derivatives.
Collapse
Affiliation(s)
- Jaqueline E Queiroz
- Laboratório de pesquisa em Bioprodutos e Síntese, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Lucas D Dias
- São Carlos Institute of Physics, University of São Paulo, São Carlos-SP, Brazil
| | - Giuliana M Vila Verde
- Laboratório de pesquisa em Bioprodutos e Síntese, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Gilberto LB Aquino
- Laboratório de pesquisa em Bioprodutos e Síntese, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Ademir J Camargo
- Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| |
Collapse
|
4
|
Dorjay Lama P, Bhaskara Rao L, Sreenivasulu C, Ravi Kishore D, Satyanarayana G. Single‐Column‐Based Heck Coupling, Condensation and Alkylation Strategy: Synthesis of 2‐Benzoyl‐2‐alkyl‐2,3‐dihydro‐1
H
‐inden‐1‐ones. ChemistrySelect 2021. [DOI: 10.1002/slct.202102811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Penang Dorjay Lama
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| | - Latchipatula Bhaskara Rao
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| | | | - Dakoju Ravi Kishore
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| | - Gedu Satyanarayana
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| |
Collapse
|
5
|
de Gonzalo G, Alcántara AR. Recent Developments in the Synthesis of β-Diketones. Pharmaceuticals (Basel) 2021; 14:ph14101043. [PMID: 34681266 PMCID: PMC8541089 DOI: 10.3390/ph14101043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Apart from being one of the most important intermediates in chemical synthesis, broadly used in the formation of C-C bonds among other processes, the β-dicarbonyl structure is present in a huge number of biologically and pharmaceutically active compounds. In fact, mainly derived from the well-known antioxidant capability associated with the corresponding enol tautomer, β-diketones are valuable compounds in the treatment of many pathological disorders, such as cardiovascular and liver diseases, hypertension, obesity, diabetes, neurological disorders, inflammation, skin diseases, fibrosis, or arthritis; therefore, the synthesis of these structures is an area of overwhelming interest for organic chemists. This paper is devoted to the advances achieved in the last ten years for the preparation of 1,3-diketones, using different chemical (Claisen, hydration of alkynones, decarboxylative coupling) or catalytic (biocatalysis, organocatalytic, metal-based catalysis) methodologies: Additionally, the preparation of branched β-dicarbonyl compounds by means of α-functionalization of non-substituted 1,3-diketones are also discussed.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Organic Chemistry Department, University of Sevilla, c/Profesor García González 2, 41012 Sevilla, Spain
- Correspondence: (G.d.G.); (A.R.A.); Tel.: +34-95-455-99-97 (G.d.G.); +34-91-394-18-21 (A.R.A.)
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
- Correspondence: (G.d.G.); (A.R.A.); Tel.: +34-95-455-99-97 (G.d.G.); +34-91-394-18-21 (A.R.A.)
| |
Collapse
|
6
|
Sun X, Gong M, Huang M, Li Y, Kim JK, Kovalev V, Shokova E, Wu Y. "One-Pot" Synthesis of γ-Pyrones from Aromatic Ketones/Heteroarenes and Carboxylic Acids. J Org Chem 2020; 85:15051-15061. [PMID: 33147963 DOI: 10.1021/acs.joc.0c01924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the various attractive properties of γ-pyrones, there are still some deficiencies in their synthetic approaches such as lower atom economy, multistep processes, and prefunctionalization of the reagents. In this work, an efficient and simple (CF3CO)2O/CF3SO3H-mediated "one-pot" approach was realized to produce γ-pyrones by applying aromatic ketones/heteroarenes and carboxylic acids as the starting materials. The target products were isolated in moderate to excellent yields. The reaction mechanism was studied by density functional theory calculational methods. The results of experimental and theoretical investigations not only helped us explain the reason of high selectivity formation of β-diketones but also proved that 1,3,5-ketones might be important intermediates for the cyclization to afford γ-pyrones.
Collapse
Affiliation(s)
- Xiangyu Sun
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Ming Gong
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Mengmeng Huang
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Yabo Li
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Jung Keun Kim
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Vladimir Kovalev
- Department of Chemistry, Moscow State University, Lenin's Hills, Moscow 119991, Russia
| | - Elvira Shokova
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| | - Yangjie Wu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Kim JK, Gong M, Shokova EA, Tafeenko VA, Kovaleva OV, Wu Y, Kovalev VV. Pyrazoles: 'one-pot' synthesis from arenes and carboxylic acids. Org Biomol Chem 2020; 18:5625-5638. [PMID: 32648880 DOI: 10.1039/d0ob01228a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid and efficient method for 'one-pot' synthesis of pyrazoles from (hetero)arenes and carboxylic acids via successive formation of ketones and β-diketones followed by heterocyclization with hydrazine has been developed. The utility of the RCOOH/TfOH/TFAA acylation system for intermediate production of ketones and 1,3-diketones is a key feature of this approach. The preliminary evaluation of the anticancer activity of the synthesized pyrazoles is performed.
Collapse
Affiliation(s)
- Jung Keun Kim
- Department of Chemistry, Moscow State University, Lenin's Hills, Moscow 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lima S, Coelho F. Synthesis of 1,4,6-Tricarbonyl Compounds via Regioselective Gold(I)-Catalyzed Alkyne Hydration and Their Application in the Synthesis of α-Arylidene-butyrolactones. ACS OMEGA 2020; 5:8032-8045. [PMID: 32309713 PMCID: PMC7161055 DOI: 10.1021/acsomega.0c00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/20/2020] [Indexed: 05/05/2023]
Abstract
We report a direct, straightforward, and regioselective hydration of 1,4-enynes designed from Morita-Baylis-Hillman adducts. Under smooth conditions and short reaction times, gold-catalyzed hydration of internal alkynes provides synthetically useful ketones as single regioisomers in yields higher than 90%. The synthetic usefulness of this protocol was demonstrated by the conversion of selected ketones into biologically valuable α-alkylidene-γ-lactones upon reduction with sodium borohydride. In the course of the scope evaluation, we discovered that this methodology could also furnish α-arylidene-β,γ-butenolides.
Collapse
Affiliation(s)
- Samia
R. Lima
- Institute of Chemistry—Laboratory
of Synthesis of Natural Products and Drugs, University of Campinas, P.O. Box 6154, 13083-970 Campinas, São
Paulo, Brazil
| | - Fernando Coelho
- Institute of Chemistry—Laboratory
of Synthesis of Natural Products and Drugs, University of Campinas, P.O. Box 6154, 13083-970 Campinas, São
Paulo, Brazil
| |
Collapse
|
9
|
Oliveira WXC, do Pim WD, Pinheiro CB, Journaux Y, Julve M, Pereira CLM. Monitoring the hydrogen bond net configuration and the dimensionality of aniline and phenyloxamate by adding 1 H-pyrazole and isoxazole as substituents for molecular self-recognition. CrystEngComm 2019. [DOI: 10.1039/c9ce00215d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring the hydrogen bond and dimensionality of aniline and phenyloxamate by adding 1H-pyrazole/isoxazole for molecular self-recognition.
Collapse
Affiliation(s)
- Willian X. C. Oliveira
- Departamento de Química
- Instituto de Ciências Exatas
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | - Walace D. do Pim
- Centro Federal de Educação Tecnológica de Minas Gerais
- 30421-169 Belo Horizonte
- Brazil
| | - Carlos B. Pinheiro
- Departamento de Física
- Instituto de Ciências Exatas
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | - Yves Journaux
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire, IPCM
- Paris
- France
| | - Miguel Julve
- Instituto de Ciencia Molecular (ICMol)
- Universitat de València
- València
- Spain
| | - Cynthia L. M. Pereira
- Departamento de Química
- Instituto de Ciências Exatas
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| |
Collapse
|
10
|
Shokova EA, Kim JK, Kovalev VV. Camphor and its derivatives. Unusual transformations and biological activity. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1070428016040011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Shokova EA, Kim JK, Kovalev VV. 1,3-Diketones. Synthesis and properties. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015060019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|