1
|
Jaroszewski B, Jelonek K, Kasperczyk J. Drug Delivery Systems of Betulin and Its Derivatives: An Overview. Biomedicines 2024; 12:1168. [PMID: 38927375 PMCID: PMC11200571 DOI: 10.3390/biomedicines12061168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Natural origin products are regarded as promising for the development of new therapeutic therapies with improved effectiveness, biocompatibility, reduced side effects, and low cost of production. Betulin (BE) is very promising due to its wide range of pharmacological activities, including its anticancer, antioxidant, and antimicrobial properties. However, despite advancements in the use of triterpenes for clinical purposes, there are still some obstacles that hinder their full potential, such as their hydrophobicity, low solubility, and poor bioavailability. To address these concerns, new BE derivatives have been synthesized. Moreover, drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. The aim of this manuscript is to summarize the recent achievements in the field of delivery systems of BE and its derivatives. This review also presents the BE derivatives mostly considered for medical applications. The electronic databases of scientific publications were searched for the most interesting achievements in the last ten years. Thus far, it is mostly nanoparticles (NPs) that have been considered for the delivery of betulin and its derivatives, including organic NPs (e.g., micelles, conjugates, liposomes, cyclodextrins, protein NPs), inorganic NPs (carbon nanotubes, gold NPs, silver), and complex/hybrid and miscellaneous nanoparticulate systems. However, there are also examples of microparticles, gel-based systems, suspensions, emulsions, and scaffolds, which seem promising for the delivery of BE and its derivatives.
Collapse
Affiliation(s)
- Bartosz Jaroszewski
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Janusz Kasperczyk
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| |
Collapse
|
2
|
Wang L, Yao M, Hu Y, Chen C, Jin L, Ma X, Yang H. Synthesis and Antitumor Activity of Diosgenin Hydroxamic Acid and Quaternary Phosphonium Salt Derivatives. ACS Med Chem Lett 2022; 13:786-791. [PMID: 35586422 PMCID: PMC9109269 DOI: 10.1021/acsmedchemlett.1c00581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/15/2022] [Indexed: 11/28/2022] Open
Abstract
Diosgenin, a component separated from Dioscorea plants, is an important starting material for steroid hormone drugs and semisynthetic steroids. In the work, two series of diosgenin derivatives were designed, synthesized, and evaluated for their cellular anticancer activities. Most of the target compounds exhibited good inhibitory activities against four cell lines, Aspc-1 (human colon adenocarcinoma cells), H358 (human nonsmall cell lung cancer cells), HCT116 (human colorectal adenocarcinoma cells), and SW620 (human metastatic pancreatic cancer cells). Among them, the representative compound 2.2f exhibited 7.9-341.7-fold antiproliferative activities against the above-mentioned four cell lines compared with the lead compound diosgenin.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Maoling Yao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yuegao Hu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Congdi Chen
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Hongjun Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
3
|
Xia X, Chen Y, Wang L, Yang ZG, Ma XD, Zhao ZG, Yang HJ. Synthesis of diosgenyl quaternary ammonium derivatives and their antitumor activity. Steroids 2021; 166:108774. [PMID: 33285175 DOI: 10.1016/j.steroids.2020.108774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023]
Abstract
Giosgenin is a naturally steroidal saponin exhibiting a variety of biological activities including antitumor ones. A series of novel diosgenyl quaternary ammonium derivatives were designed and synthesized to develop potential anti-tumor agents in our research. All novel derivatives were characterized by 1H NMR, 13C NMR and HR-MS, and evaluated for their in vitro anti-proliferative activities using MTT assay. The human cancer cell lines were A549 (Human lung cancer cell), H1975 (Human lung adenocarcinoma cell), A431 (Human skin squamous cell carcinoma), HCT-116 (Human colorectal adenocarcinoma cell), Aspc-1 (Human metastatic pancreatic cancer cell), Ramos (Human B lymphoma cell), HBE (Human bronchial epithelioid cell) and LO2 (Human normal hepatocyte).
Collapse
Affiliation(s)
- Xi Xia
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Yu Chen
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Lin Wang
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Zhi-Gang Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Xiao-Dong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Zhi-Gang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Hong-Jun Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
4
|
Ponomaryov DV, Grigorʼeva LR, Nemtarev AV, Tsepaeva OV, Mironov VF, Gnezdilov OI, Antipin IS. 3,28-Diacetoxylup-20(29)-ene-30-oic Acid and Its ω-Bromoalkyl
Esters. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Konovalov AI, Antipin IS, Burilov VA, Madzhidov TI, Kurbangalieva AR, Nemtarev AV, Solovieva SE, Stoikov II, Mamedov VA, Zakharova LY, Gavrilova EL, Sinyashin OG, Balova IA, Vasilyev AV, Zenkevich IG, Krasavin MY, Kuznetsov MA, Molchanov AP, Novikov MS, Nikolaev VA, Rodina LL, Khlebnikov AF, Beletskaya IP, Vatsadze SZ, Gromov SP, Zyk NV, Lebedev AT, Lemenovskii DA, Petrosyan VS, Nenaidenko VG, Negrebetskii VV, Baukov YI, Shmigol’ TA, Korlyukov AA, Tikhomirov AS, Shchekotikhin AE, Traven’ VF, Voskresenskii LG, Zubkov FI, Golubchikov OA, Semeikin AS, Berezin DB, Stuzhin PA, Filimonov VD, Krasnokutskaya EA, Fedorov AY, Nyuchev AV, Orlov VY, Begunov RS, Rusakov AI, Kolobov AV, Kofanov ER, Fedotova OV, Egorova AY, Charushin VN, Chupakhin ON, Klimochkin YN, Osyanin VA, Reznikov AN, Fisyuk AS, Sagitullina GP, Aksenov AV, Aksenov NA, Grachev MK, Maslennikova VI, Koroteev MP, Brel’ AK, Lisina SV, Medvedeva SM, Shikhaliev KS, Suboch GA, Tovbis MS, Mironovich LM, Ivanov SM, Kurbatov SV, Kletskii ME, Burov ON, Kobrakov KI, Kuznetsov DN. Modern Trends of Organic Chemistry in Russian Universities. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s107042801802001x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ye Y, Zhang T, Yuan H, Li D, Lou H, Fan P. Mitochondria-Targeted Lupane Triterpenoid Derivatives and Their Selective Apoptosis-Inducing Anticancer Mechanisms. J Med Chem 2017; 60:6353-6363. [DOI: 10.1021/acs.jmedchem.7b00679] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaqing Ye
- Department
of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry
of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, P. R. China
| | - Tao Zhang
- Department
of Medicinal Chemistry, Key Lab of Chemical Biology of Ministry of
Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, P. R. China
- Shandong Qidu
Pharmaceutical Co. Ltd., Shandong Provincial Key Laboratory of Neuroprotective
Drugs, Zibo 255400, P. R. China
| | - Huiqing Yuan
- Department
of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Defeng Li
- Shandong Qidu
Pharmaceutical Co. Ltd., Shandong Provincial Key Laboratory of Neuroprotective
Drugs, Zibo 255400, P. R. China
| | - Hongxiang Lou
- Department
of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry
of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, P. R. China
| | - Peihong Fan
- Department
of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry
of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
7
|
Jonnalagadda S, Suman P, Morgan D, Seay J. Recent Developments on the Synthesis and Applications of Betulin and Betulinic Acid Derivatives as Therapeutic Agents. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00002-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|