1
|
Synthesis of pyrrole-ferrocene ensembles and their rearrangement into 2-(ferrocenylmethyl)-1,2-dihydro-3H-pyrrol-3-ones. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Lipin KV, Ershov OV, Fedoseev SV, Mikhailov AA. Synthesis of 3-R-Sulfanyl-5-amino-1-phenyl-1H-pyrazole-4-Carbonitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020010273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Bock C, Surur AS, Beirow K, Kindermann MK, Schulig L, Bodtke A, Bednarski PJ, Link A. Sulfide Analogues of Flupirtine and Retigabine with Nanomolar K V 7.2/K V 7.3 Channel Opening Activity. ChemMedChem 2019; 14:952-964. [PMID: 30861620 DOI: 10.1002/cmdc.201900112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 12/18/2022]
Abstract
The potassium channel openers flupirtine and retigabine have proven to be valuable analgesics or antiepileptics. Their recent withdrawal due to occasional hepatotoxicity and tissue discoloration, respectively, leaves a therapeutic niche unfilled. Metabolic oxidation of both drugs gives rise to the formation of electrophilic quinones. These elusive, highly reactive metabolites may induce liver injury in the case of flupirtine and blue tissue discoloration after prolonged intake of retigabine. We examined which structural features can be altered to avoid the detrimental oxidation of the aromatic ring and shift oxidation toward the formation of more benign metabolites. Structure-activity relationship studies were performed to evaluate the KV 7.2/3 channel opening activity of 45 derivatives. Sulfide analogues were identified that are devoid of the risk of quinone formation, but possess potent KV 7.2/3 opening activity. For example, flupirtine analogue 3-(3,5-difluorophenyl)-N-(6-(isobutylthio)-2-(pyrrolidin-1-yl)pyridin-3-yl)propanamide (48) has 100-fold enhanced activity (EC50 =1.4 nm), a vastly improved toxicity/activity ratio, and the same efficacy as retigabine in vitro.
Collapse
Affiliation(s)
- Christian Bock
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Abdrrahman S Surur
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Kristin Beirow
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Markus K Kindermann
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Lukas Schulig
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Anja Bodtke
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Patrick J Bednarski
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489, Greifswald, Germany
| |
Collapse
|