1
|
Stoikov II, Antipin IS, Burilov VA, Kurbangalieva AR, Rostovskii NV, Pankova AS, Balova IA, Remizov YO, Pevzner LM, Petrov ML, Vasilyev AV, Averin AD, Beletskaya IP, Nenajdenko VG, Beloglazkina EK, Gromov SP, Karlov SS, Magdesieva TV, Prishchenko AA, Popkov SV, Terent’ev AO, Tsaplin GV, Kustova TP, Kochetova LB, Magdalinova NA, Krasnokutskaya EA, Nyuchev AV, Kuznetsova YL, Fedorov AY, Egorova AY, Grinev VS, Sorokin VV, Ovchinnikov KL, Kofanov ER, Kolobov AV, Rusinov VL, Zyryanov GV, Nosov EV, Bakulev VA, Belskaya NP, Berezkina TV, Obydennov DL, Sosnovskikh VY, Bakhtin SG, Baranova OV, Doroshkevich VS, Raskildina GZ, Sultanova RM, Zlotskii SS, Dyachenko VD, Dyachenko IV, Fisyuk AS, Konshin VV, Dotsenko VV, Ivleva EA, Reznikov AN, Klimochkin YN, Aksenov DA, Aksenov NA, Aksenov AV, Burmistrov VV, Butov GM, Novakov IA, Shikhaliev KS, Stolpovskaya NV, Medvedev SM, Kandalintseva NV, Prosenko OI, Menshchikova EB, Golovanov AA, Khashirova SY. Organic Chemistry in Russian Universities. Achievements of Recent Years. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2024; 60:1361-1584. [DOI: 10.1134/s1070428024080013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 01/06/2025]
|
2
|
Semenov AV, Baykov SV, Soldatova NS, Geyl KK, Ivanov DM, Frontera A, Boyarskiy VP, Postnikov PS, Kukushkin VY. Noncovalent Chelation by Halogen Bonding in the Design of Metal-Containing Arrays: Assembly of Double σ-Hole Donating Halolium with Cu I-Containing O,O-Donors. Inorg Chem 2023; 62:6128-6137. [PMID: 37000904 DOI: 10.1021/acs.inorgchem.3c00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Five new copper(I) complexes─composed of the paired dibenzohalolium and [CuL2]- (L = 1,2,4-oxadiazolate) counterions in which O,O-atoms of the anion are simultaneously linked to the halogen atom─were generated and isolated as the solid via the three-component reaction between [Cu(MeCN)4](BF4), sodium 1,2,4-oxadiazolates, and dibenzohalolium triflates (or trifluoroacetates). This reaction is different from the previously reported CuI-catalyzed arylation of 1,2,4-oxadiazolones by diaryliodonium salts. Inspection of the solid-state X-ray structures of the complexes revealed the strong three-center X···O,O (X = Br, I) halogen bonding occurred between the oxadiazolate moieties and dibenzohalolium cation. According to performed theoretical calculations, this noncovalent interaction (or noncovalent chelation) was recognized as the main force in the stabilization of the copper(I) complexes. An explanation for the different behavior of complexes, which provide either chelate or nonchelate binding, is based on the occurrence of additional -CH3···π interactions, which were also quantified.
Collapse
|
3
|
Mambwe D, Korkor CM, Mabhula A, Ngqumba Z, Cloete C, Kumar M, Barros PL, Leshabane M, Coertzen D, Taylor D, Gibhard L, Njoroge M, Lawrence N, Reader J, Moreira DR, Birkholtz LM, Wittlin S, Egan TJ, Chibale K. Novel 3-Trifluoromethyl-1,2,4-oxadiazole Analogues of Astemizole with Multi-stage Antiplasmodium Activity and In Vivo Efficacy in a Plasmodium berghei Mouse Malaria Infection Model. J Med Chem 2022; 65:16695-16715. [PMID: 36507890 DOI: 10.1021/acs.jmedchem.2c01516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iterative medicinal chemistry optimization of an ester-containing astemizole (AST) analogue 1 with an associated metabolic instability liability led to the identification of a highly potent 3-trifluoromethyl-1,2,4-oxadiazole analogue 23 (PfNF54 IC50 = 0.012 μM; PfK1 IC50 = 0.040 μM) displaying high microsomal metabolic stability (HLM CLint < 11.6 μL·min-1·mg-1) and > 1000-fold higher selectivity over hERG compared to AST. In addition to asexual blood stage activity, the compound also shows activity against liver and gametocyte life cycle stages and demonstrates in vivo efficacy in Plasmodium berghei-infected mice at 4 × 50 mg·kg-1 oral dose. Preliminary interrogation of the mode of action using live-cell microscopy and cellular heme speciation revealed that 23 could be affecting multiple processes in the parasitic digestive vacuole, with the possibility of a novel target at play in the organelles associated with it.
Collapse
Affiliation(s)
- Dickson Mambwe
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Constance M Korkor
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Amanda Mabhula
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Zama Ngqumba
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Cleavon Cloete
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Paula Ladeia Barros
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Instituto Gonçalo Moniz, CEP 40296-710 Salvador, Brazil
| | - Meta Leshabane
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Diogo Rodrigo Moreira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Instituto Gonçalo Moniz, CEP 40296-710 Salvador, Brazil
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
4
|
Reaction of N-acetylbenzamides with hydroxylamine hydrochloride: synthesis of 3-methyl-5-aryl-1,2,4-oxadiazoles. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Baykov S, Tarasenko M, Kotlyarova V, Shetnev A, Zelenkov LE, Boyarskaya IA, Boyarskiy VP. 2‐(1,2,4‐Oxadiazol‐5‐yl)aniline as a New Scaffold for Blue Luminescent Materials. ChemistrySelect 2022. [DOI: 10.1002/slct.202201201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sergey Baykov
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University 634034 Tomsk Russian Federation
| | - Marina Tarasenko
- Pharmaceutical Technology Transfer Center Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. 150000 Yaroslavl Russian Federation
| | - Valentina Kotlyarova
- Pharmaceutical Technology Transfer Center Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. 150000 Yaroslavl Russian Federation
| | - Anton Shetnev
- Pharmaceutical Technology Transfer Center Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. 150000 Yaroslavl Russian Federation
| | - Lev E. Zelenkov
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
- ITMO University 191002 Saint Petersburg Russian Federation
| | - Irina A. Boyarskaya
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Vadim P. Boyarskiy
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| |
Collapse
|
6
|
External oxidant-free and transition metal-free synthesis of 5-amino-1,2,4-thiadiazoles as promising antibacterials against ESKAPE pathogen strains. Mol Divers 2022; 27:651-666. [PMID: 35639224 DOI: 10.1007/s11030-022-10445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
A new route to 5-amino-1,2,4-thiadiazole derivatives via reaction of N-chloroamidines with isothiocyanates has been proposed. The advantages of this method are high product yields (up to 93%), the column chromatography-free workup procedure, scalability and the absence of additive oxidizing agents or transition metal catalysts. The 28 examples of 5-amino-1,2,4-thiadiazole derivatives obtaining via the proposing protocol were evaluated in vitro against ESKAPE pathogens strains (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae). It was found that compounds 5ba, 5bd, 6a, 6d and 6c have potent antibacterial activity (MIC values 0.09-1.5 μg mL-1), which is superior to the activity of commercial antibiotics such as pefloxacin (MIC 4-8 μg mL-1) and streptomycin (MIC 2-32 μg mL-1). The additional cytotoxic assay of hit compounds on PANC-1 cell line demonstrated the low or non-cytotoxicity activity at the same level of concentrations. Thus, these 5 compounds are promising starting point for further antimicrobial drug development.
Collapse
|
7
|
Soldatova NS, Semenov AV, Geyl KK, Baykov SV, Shetnev AA, Konstantinova AS, Korsakov MM, Yusubov MS, Postnikov PS. Copper‐Catalyzed Selective N‐Arylation of Oxadiazolones by Diaryliodonium Salts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Natalia S. Soldatova
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Artem V. Semenov
- M.V. Lomonosov Institute of Fine Chemical Technologies MIREA – Russian Technological University 86 Vernadskogo Pr Moscow 119571 Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry 16/10 Miklukho-Maklaya St. Moscow 117997 Russian Federation
| | - Kirill K. Geyl
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Sergey V. Baykov
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. Yaroslavl 150000 Russian Federation
| | - Anna S. Konstantinova
- Russian State University named after A.N. Kosygin (Technology. Design. Art) 33 Sadovnicheskaya St. Moscow 117997 Russian Federation
| | - Mikhail M. Korsakov
- Russian State University named after A.N. Kosygin (Technology. Design. Art) 33 Sadovnicheskaya St. Moscow 117997 Russian Federation
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Department of Solid State Engineering Institute of Chemical Technology Prague 16628 Czech Republic
| |
Collapse
|
8
|
Tarasenko MV, Kotlyarova VD, Baykov SV, Shetnev AA. 2-(1,2,4-Oxadiazol-5-yl)anilines Based on Amidoximes and Isatoic Anhydrides: Synthesis and Structure Features. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221050030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Baikov SV, Trukhanova YA, Tarasenko MV, Kinzhalov MA. Synthesis and Study of the Structure of Palladium(II) Acyclic
Diaminocarbene Complexes Containing a 1,2,4-Oxadiazole Moiety. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220100126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Tarasenko MV, Presnukhina SI, Baikov SV, Shetnev AA. Synthesis and Evaluation of Antibacterial Activity of 1,2,4-Oxadiazole-Containing Biphenylcarboxylic Acids. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220090042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
|
12
|
Dhotre BK, Raut SV, Khandebharad AU, Pathan A. Efficient Synthesis of 1,4-Bis(5-aryl-1,3,4-oxadiazol-2-yl)-2,3,5,6-tetrafluorobenzenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Shetnev AA, Pankratieva VE, Kunichkina AS, Vlasov AS, Proskurina IK, Kotov AD, Korsakov MK. Synthesis of 3,5-Disubstituted 1,2,4-Oxadiazoles from Amidoximes and Aldehydes in the Superbasic System NaOH/DMSO. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s107042802007009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Presnukhina S, Tarasenko M, Baykov S, Smirnov SN, Boyarskiy VP, Shetnev A, Korsakov MK. Entry into (E)-3-(1,2,4-oxadiazol-5-yl)acrylic acids via a one-pot ring-opening/ring-closing/retro-Diels-Alder reaction sequence. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
M L CR, Nawaz Khan FR, Saravanan V. Facile synthesis of N-1,2,4-oxadiazole substituted sulfoximines from N-cyano sulfoximines. Org Biomol Chem 2019; 17:9187-9199. [PMID: 31595935 DOI: 10.1039/c9ob01931f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A divergent approach has been successfully developed for the synthesis of N-1,2,4-oxadiazole substituted sulfoximines starting from N-cyano sulfoximines. This method has a wide degree of substrate scope that includes aryl, heteroaryl, alkyl, fluoroalkyl and saturated heterocyclic compounds. Excellent functional group tolerability was also observed. Extension of this methodology to nucleosides, amino acids and dipeptides was found to be successful. A gram scale reaction was also established. The major part of this method is metal free and the utility of environmentally friendly solvents such as 2-methyl THF and ionic liquids is an added advantage.
Collapse
Affiliation(s)
- Chenna Reddy M L
- Medicinal Chemistry, Jubilant Biosys Ltd, #96, Industrial, Suburb, 2nd Stage, Yeshwanthpur, Bangalore, 560022, India.
| | | | | |
Collapse
|
16
|
Geyl K, Baykov S, Tarasenko M, Zelenkov LE, Matveevskaya V, Boyarskiy VP. Convenient entry to N-pyridinylureas with pharmaceutically privileged oxadiazole substituents via the acid-catalyzed C H activation of N-oxides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Diastereoselective Opening of Bridged Anhydrides by Amidoximes Providing Access to 1,2,4-Oxadiazole/Norborna(e)ne Hybrids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Golushko AA, Khoroshilova OV, Vasilyev AV. Synthesis of 1,2,4-Oxadiazoles by Tandem Reaction of Nitroalkenes with Arenes and Nitriles in the Superacid TfOH. J Org Chem 2019; 84:7495-7500. [PMID: 31117566 DOI: 10.1021/acs.joc.9b00812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The tandem reaction of nitroalkenes with arenes and nitriles in the superacid CF3SO3H (TfOH) results in the formation of 1,2,4-oxadiazole derivatives in yields up to 96%. This reaction proceeds via the consequent interaction of arenes and nitriles, as nucleophiles, with intermediate cationic species derived by the protonation of nitroalkenes in TfOH. This is novel and general synthesis of 1,2,4-oxadiazoles, which are very important compounds for medicinal chemistry.
Collapse
Affiliation(s)
- Andrei A Golushko
- Department of Organic Chemistry, Institute of Chemistry , Saint Petersburg State University , Universitetskaya nab., 7/9 , Saint Petersburg 199034 , Russia
| | - Olesya V Khoroshilova
- Center for X-ray Diffraction Studies, Research Park , Saint Petersburg State University , Universitetskiy pr., 26 , Saint Petersburg , Petrodvoretz 198504 , Russia
| | - Aleksander V Vasilyev
- Department of Organic Chemistry, Institute of Chemistry , Saint Petersburg State University , Universitetskaya nab., 7/9 , Saint Petersburg 199034 , Russia.,Department of Chemistry , Saint Petersburg State Forest Technical University , Institutsky per., 5 , Saint Petersburg 194021 , Russia
| |
Collapse
|
19
|
Shetnev A, Baykov S, Kalinin S, Belova A, Sharoyko V, Rozhkov A, Zelenkov L, Tarasenko M, Sadykov E, Korsakov M, Krasavin M. 1,2,4-Oxadiazole/2-Imidazoline Hybrids: Multi-target-directed Compounds for the Treatment of Infectious Diseases and Cancer. Int J Mol Sci 2019; 20:ijms20071699. [PMID: 30959765 PMCID: PMC6480344 DOI: 10.3390/ijms20071699] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Replacement of amide moiety with the 1,2,4-oxadiazole core in the scaffold of recently reported efflux pump inhibitors afforded a novel series of oxadiazole/2-imidazoline hybrids. The latter compounds exhibited promising antibacterial activity on both Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonasfluorescens) strains. Furthermore, selected compounds markedly inhibited the growth of certain drug-resistant bacteria. Additionally, the study revealed the antiproliferative activity of several antibacterial frontrunners against pancreas ductal adenocarcinoma (PANC-1) cell line, as well as their type-selective monoamine oxidase (MAO) inhibitory profile.
Collapse
Affiliation(s)
- Anton Shetnev
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., Yaroslavl 150000, Russia.
| | - Sergey Baykov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| | - Stanislav Kalinin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| | - Alexandra Belova
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., Yaroslavl 150000, Russia.
| | - Vladimir Sharoyko
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| | - Anton Rozhkov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| | - Lev Zelenkov
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| | - Marina Tarasenko
- Yaroslavl State Technical University, 88 Moscowsky Pr, Yaroslavl 150023, Russia.
| | - Evgeny Sadykov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Science, 1 Favorsky Str, Irkutsk 664033, Russian.
| | - Mikhail Korsakov
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., Yaroslavl 150000, Russia.
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Pr, Peterhof, Saint Petersburg 198504, Russia.
| |
Collapse
|