1
|
Sulimov A, Ilin I, Kutov D, Shikhaliev K, Shcherbakov D, Pyankov O, Stolpovskaya N, Medvedeva S, Sulimov V. New Chemicals Suppressing SARS-CoV-2 Replication in Cell Culture. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175732. [PMID: 36080498 PMCID: PMC9457583 DOI: 10.3390/molecules27175732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Candidates to being inhibitors of the main protease (Mpro) of SARS-CoV-2 were selected from the database of Voronezh State University using molecular modeling. The database contained approximately 19,000 compounds represented by more than 41,000 ligand conformers. These ligands were docked into Mpro using the SOL docking program. For one thousand ligands with best values of the SOL score, the protein–ligand binding enthalpy was calculated by the PM7 quantum-chemical method with the COSMO solvent model. Using the SOL score and the calculated protein–ligand binding enthalpies, eighteen compounds were selected for the experiments. Several of these inhibitors suppressed the replication of the coronavirus in cell culture, and we used the best three among them in the search for chemical analogs. Selection among analogs using the same procedure followed by experiments led to identification of seven inhibitors of the SARS-CoV-2 replication in cell culture with EC50 values at the micromolar level. The identified inhibitors belong to three chemical classes. The three inhibitors, 4,4-dimethyldithioquinoline derivatives, inhibit SARS-CoV-2 replication in Vero E6 cell culture just as effectively as the best published non-covalent inhibitors, and show low cytotoxicity. These results open up a possibility to develop antiviral drugs against the SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Alexey Sulimov
- Dimonta Ltd., 15 Nagornaya Str., Bldg 8, 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Leninskie Gory, 1, Building 4, 119234 Moscow, Russia
| | - Ivan Ilin
- Dimonta Ltd., 15 Nagornaya Str., Bldg 8, 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Leninskie Gory, 1, Building 4, 119234 Moscow, Russia
| | - Danil Kutov
- Dimonta Ltd., 15 Nagornaya Str., Bldg 8, 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Leninskie Gory, 1, Building 4, 119234 Moscow, Russia
- Correspondence: (D.K.); (V.S.)
| | - Khidmet Shikhaliev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya Sq., 394018 Voronezh, Russia
| | - Dmitriy Shcherbakov
- State Research Centre of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Oleg Pyankov
- State Research Centre of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia
| | - Nadezhda Stolpovskaya
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya Sq., 394018 Voronezh, Russia
| | - Svetlana Medvedeva
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, 1 Universitetskaya Sq., 394018 Voronezh, Russia
| | - Vladimir Sulimov
- Dimonta Ltd., 15 Nagornaya Str., Bldg 8, 117186 Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Leninskie Gory, 1, Building 4, 119234 Moscow, Russia
- Correspondence: (D.K.); (V.S.)
| |
Collapse
|
2
|
An Efficient Synthesis of Novel 4-Aryl-2-thioxo-3,4-dihydro-1H-pyrimido[1,2-a][1,3,5]triazin-6(2H)-ones and Their Antibacterial Activity. MOLBANK 2022. [DOI: 10.3390/m1417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
New substituted 4-aryl-8-methyl-2-thioxo-1,2,3,4-tetrahydro-6H-pyrimido[1,2-a][1,3,5]triazin-6-one 8a–b and ethyl 4-aryl-6-oxo-2-thioxo-1,3,4,6-tetrahydro-2H-pyrimido[1,2-a][1,3,5]triazine-7-carboxylate 8c–e were synthesized by the reaction of the corresponding 4-oxopyrimidin-2-ylthioureas with arylaldehydes. The formation of only one regioisomer was proven using complex spectral data and its structure was characterized. It was found that the interaction of 6-amino-4-phenyl-3,4-dihydro-1,3,5-triazine-2(1H)-thione with ethyl acetoacetate and diethyl ethoxymethylenemalonate leads to the formation of the same regioisomer. That is, changing the sequence of stages in this cascade process does not affect the structure of the final reaction product. All synthesized compounds exhibit antibacterial activity against E. coli and S. aureus cultures at a concentration (MIC) of 256 µg/mL.
Collapse
|
3
|
Anandu KR, Jayan AP, Aneesh TP, Saiprabha VN. Pyrimidine derivatives as EGFR tyrosine kinase inhibitors in NSCLC: - A comprehensive review. Chem Biol Drug Des 2022; 100:599-621. [PMID: 35883248 DOI: 10.1111/cbdd.14124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
EGFR positive NSCLC due to primary mutation (EGFR DEL19 & L858R) has been recognized as a crucial mediator of tumor progression. This led to the development and approval of EGFR tyrosine kinase inhibitors which addresses EGFR mediated NSCLC but fail to show potency after initial months of therapy due to acquired resistance (EGFR T790M, EGFR C797S). Extensive research allowed identification of drugs for EGFR positive NSCLC, wherein the majority of compounds have a pyrimidine substructure offering marked therapeutic benefits compared to chemotherapy. This current review outlines the diverse pyrimidine derivatives with amino-linked and fused pyrimidine scaffolds such as furo-pyrimidine, pyrimido-pyrimidine, thieno-pyrimidine, highlighting pyrimidine EGFR TK inhibitors reported in research emphasizing structural aspects, design approaches, inhibition potential. selectivity profile towards mutant EGFR conveyed through biological evaluation studies. Furthermore, mentioning the in-silico interaction profile of synthesized compounds for evaluating the binding affinity with key amino acids. The epilogue of review focuses on the recent research that drives forward to aid in the discovery and development of substituted amino and fused scaffolds of pyrimidine that can counteract the mutations and effectively manage EGFR positive NSCLC.
Collapse
Affiliation(s)
- K R Anandu
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ajay P Jayan
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - T P Aneesh
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - V N Saiprabha
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
4
|
A Multifield Study on Dimethyl Acetylenedicarboxylate: A Reagent Able to Build a New Cycle on Diaminoimidazoles. Molecules 2022; 27:molecules27103326. [PMID: 35630803 PMCID: PMC9147549 DOI: 10.3390/molecules27103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
A new effective method for the synthesis of imidazo[1,5-b]pyridazines derivatives (yields = 68–89%) by the interaction of 1,2-diamino-4-phenylimidazole with DMAD, in methanol and in the presence of a catalytic amount of acetic acid, is proposed. The course of reaction has been examined by classical organic methods, HPLC-MS analysis, and quantum-chemical calculations.
Collapse
|
5
|
Zahra U, Zaib S, Saeed A, Rehman MU, Shabir G, Alsaab HO, Khan I. New acetylphenol-based acyl thioureas broaden the scope of drug candidates for urease inhibition: synthesis, in vitro screening and in silico analysis. Int J Biol Macromol 2022; 198:157-167. [PMID: 34953808 DOI: 10.1016/j.ijbiomac.2021.12.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/06/2023]
Abstract
Helicobacter pylori urease remains a validated drug target for the eradication of pervasive chronic stomach infection that leads to severe human health diseases such as gastritis and stomach cancer. The increased failure of current treatment protocols because of resistance to broadband antibiotics, severe side effects and low compliance underscore the need for a targeted eradication therapy. Therefore, in the present research, we have developed a new series of acetylphenol-based acyl thioureas that can potentially provide a new template for drug candidates to inhibit urease enzyme. Newly synthesized compounds 7a-j were evaluated for urease inhibitory strength using thiourea as a positive control. In vitro inhibitory results revealed that all the tested compounds were significantly potent than the standard drug. The most active lead 7f competitively inhibited the enzyme and displayed an IC50 value of 0.054 ± 0.002 μM, a ~413-fold strong inhibitory potential than thiourea (IC50 = 22.3 ± 0.031 μM). Various insightful structure-activity relationships were developed showing the key structural requirements for potent inhibitory effects. Molecular docking analysis of 7f inside the active pocket of urease suggested several important interactions with amino acid residues such as ILE411, MET637, ARG439, GLN635, ALA636 and ALA440. Finally, pharmacokinetic properties suggested that the tested derivatives are safe to develop as low-molecular-weight drugs to treat ureolytic bacterial infections.
Collapse
Affiliation(s)
- Urage Zahra
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan.
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Mujeeb Ur Rehman
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Ghulam Shabir
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
6
|
Filho EV, Pinheiro EM, Pinheiro S, Greco SJ. Aminopyrimidines: Recent synthetic procedures and anticancer activities. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Ayati A, Moghimi S, Toolabi M, Foroumadi A. Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy. Eur J Med Chem 2021; 221:113523. [PMID: 33992931 DOI: 10.1016/j.ejmech.2021.113523] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022]
Abstract
Despite significant improvements of new treatment options, cancer continues to represent as one of the most common and fatal disease. The EGFR signaling pathway is considered as a significant approach in targeted therapy of cancers. Blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR have shown considerable improvement in cancer therapy. In an effort to identify EGFR tyrosine kinase inhibitors (TKI), several small molecules especially pyrimidine containing derivatives have been designed by applying molecular simulation and evaluated the emergence of epigenetic mutation and resistance problems restricted the long-term effectiveness of such medication and explained the need for further investigations in this field. In recent years, the studies have been focused on genetic alterations on EGFR tyrosine kinase domain, which led to the design and synthesis of more selective and effective inhibitors. Herein, we give an overview of the importance and status of EGFR inhibitors in cancer therapy. In addition, we provide an update of the recent advances in design, discovery and development of novel pyrimidine containing compounds as promising selective EGFR TK inhibitors.
Collapse
Affiliation(s)
- Adileh Ayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|