1
|
González-Torres M, Elizalde-Cárdenas A, Leyva-Gómez G, González-Mendoza O, Lima E, Alfonso-Núñez I, Abad-Contreras DE, Del Prado-Audelo M, Pichardo-Bahena R, Carlos-Martínez A, Ribas-Aparicio RM. Combined use of novel chitosan-grafted N-hydroxyethyl acrylamide polyurethane and human dermal fibroblasts as a construct for in vitro-engineered skin. Int J Biol Macromol 2023; 238:124136. [PMID: 36965555 DOI: 10.1016/j.ijbiomac.2023.124136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
A rich plethora of information about grafted chitosan (CS) for medical use has been reported. The capability of CS-grafted poly(N-hydroxyethyl acrylamide) (CS-g-PHEAA) to support human dermal fibroblasts (HDFs) in vitro has been proven. However, CS-grafted copolymers lack good stiffness and the characteristic microstructure of a cellular matrix. In addition, whether CS-g-PHEAA can be used to prepare a scaffold with a suitable morphology and mechanical properties for skin tissue engineering (STE) is unclear. This study aimed to show for the first time that step-growth polymerizations can be used to obtain polyurethane (PU) platforms of CS-g-PHEAA, which can also have enhanced microhardness and be suitable for in vitro cell culture. The PU prepolymers were prepared from grafted CS, polyethylene glycol, and 1,6-hexamethylene diisocyanate. The results proved that a poly(saccharide-urethane) [(CS-g-PHEAA)-PU] could be successfully synthesized with a more suitable microarchitecture, thermal properties, and topology than CS-PU for the dynamic culturing of fibroblasts. Cytotoxicity, proliferation, histological and immunophenotype assessments revealed significantly higher biocompatibility and cell proliferation of the derivative concerning the controls. Cells cultured on (CS-g-PHEAA)-PU displayed a quiescent state compared to those cultured on CS-PU, which showed an activated phenotype. These findings may be critical factors in future studies establishing wound dressing models.
Collapse
Affiliation(s)
- Maykel González-Torres
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico.
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Oswaldo González-Mendoza
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Israel Alfonso-Núñez
- Laboratorio de Biomateriales, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - David Eduardo Abad-Contreras
- Laboratorio de Biomateriales, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico
| | - Raúl Pichardo-Bahena
- Servicio de Anatomía Patológica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Alberto Carlos-Martínez
- Laboratorio de Microscopia Electrónica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", Ciudad de Mexico 14389, Mexico
| | - Rosa María Ribas-Aparicio
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, 07738, Mexico
| |
Collapse
|
2
|
Pokatilov FA, Akamova HV, Kizhnyaev VN. Synthesis and properties of tetrazole-containing polyelectrolytes based on chitosan, starch, and arabinogalactan. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
The synthesis of tetrazole-containing derivatives of chitosan, starch, and arabinogalactan was carried out by a sequence of reactions including cyanoethylation of polysaccharides and subsequent azidation of cyanoethyl derivatives. The reaction of cyanoethylation of polysaccharides with acrylonitrile proceeds in the temperature range 40–60°C in the presence of NaOH. The transformation of nitrile groups into tetrazole rings (azidation) of cyanoethylated polysaccharide derivatives was carried out with a mixture of sodium azide with ammonium chloride in DMF at 105°C. The reaction with the participation of derivatives of starch and arabinogalactan is characterized by the degree of conversion of nitrile groups into tetrazole rings, which is close to the maximum. The introduction of unsubstituted tetrazole rings into the structure of polysaccharides of acidic N–H substantially changes some of their properties. Like other carbo- and hetero-chain polymers containing N–H unsubstituted tetrazole rings in the structure, tetrazolated polysaccharides exhibit the properties of acidic polyelectrolytes. Tetrazole-containing derivatives of chitosan exhibit the properties of polyampholytes. The presence of tetrazole rings in the structure of modified polysaccharides allows the reaction with epoxy compounds to yield network polymers capable of limited swelling in aqueous media with the formation of polyelectrolyte hydrogels.
Collapse
Affiliation(s)
- Fedor A. Pokatilov
- Department of Chemistry, Irkutsk State University , K. Marksa St. 1 , Irkutsk 664003 , Russia
| | - Helen V. Akamova
- Department of Chemistry, Irkutsk State University , K. Marksa St. 1 , Irkutsk 664003 , Russia
| | - Valery N. Kizhnyaev
- Department of Chemistry, Irkutsk State University , K. Marksa St. 1 , Irkutsk 664003 , Russia
| |
Collapse
|
3
|
Barik D, Kundu K, Dash M. Montmorillonite stabilized chitosan- co-mucin hydrogel for tissue engineering applications. RSC Adv 2021; 11:30329-30342. [PMID: 35480259 PMCID: PMC9041129 DOI: 10.1039/d1ra04803a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
The role of polymers has played a crucial role in developing templates that can promote regeneration as tissue-engineered matrices. The present study aims to develop functional matrices involving the protein mucin. The mucin used in this study is characterised using MALDI-TOF TOF and CD spectroscopy prior to conjugation. Thereupon, a hybrid scaffold comprising of a polysaccharide, chitosan, chemically conjugated to a protein, mucin, and encapsulated with montmorillonite is developed. Grafting of hydroxyethyl methacrylate (HEMA) is done to overcome the issue of mechanical weakness that mucin hydrogels usually undergo. It was observed that the presence of montmorillonite led to the stability of the hydrogels. The conjugations with varied ratios of the polysaccharide and protein were characterized using spectroscopic techniques. The prepared gels showed appreciable material properties in terms of water uptake and porosity. Hydrogels with different ratios of the polysaccharide and protein were evaluated for their biocompatibility. The biological evaluation of the hydrogels was performed with MC3T3E1 and C2C12 cell lines indicating their potential for wider tissue engineering applications.
Collapse
Affiliation(s)
- Debyashreeta Barik
- Institute of Life Sciences Nalco Square Odisha India .,School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University Bhubaneswar Odisha 751024 India
| | - Koustav Kundu
- Institute of Life Sciences Nalco Square Odisha India
| | - Mamoni Dash
- Institute of Life Sciences Nalco Square Odisha India
| |
Collapse
|
4
|
Demina TS, Akopova TA, Zelenetsky AN. Materials Based on Chitosan and Polylactide: From Biodegradable Plastics to Tissue Engineering Constructions. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The transition to green chemistry and biodegradable polymers is a logical stage in the development of modern chemical science and technology. In the framework of this review, the advantages, disadvantages, and potential of biodegradable polymers of synthetic and natural origin are compared using the example of polylactide and chitosan as traditional representatives of these classes of polymers, and the possibilities of their combination via obtaining composite materials or copolymers are assessed. The mechanochemical approach to the synthesis of graft copolymers of chitosan with oligolactides/polylactides is considered in more detail.
Collapse
|
5
|
González-Torres M, Serrano-Aguilar IH, Cabrera-Wrooman A, Sánchez-Sánchez R, Pichardo-Bahena R, Melgarejo-Ramírez Y, Leyva-Gómez G, Cortés H, de Los Angeles Moyaho-Bernal M, Lima E, Ibarra C, Velasquillo C. Gamma radiation-induced grafting of poly(2-aminoethyl methacrylate) onto chitosan: A comprehensive study of a polyurethane scaffold intended for skin tissue engineering. Carbohydr Polym 2021; 270:117916. [PMID: 34364636 DOI: 10.1016/j.carbpol.2021.117916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 01/12/2023]
Abstract
A novel brush-like poly(2-aminoethyl methacrylate) (PAEMA) was grafted onto chitosan (CS) through gamma radiation-induced polymerization. The copolymer (CS-g-PAEMA) was used to prepare a sodium acetate leached poly(urethane-urea) scaffold. The above derivatives were developed, synthesized, and characterized to meet the specific characteristics of biomaterials. The results revealed that this method is an easy and successful route for grafting PAEMA onto CS. The feasibility of preparing a CS-g-PAEMA polyurethane foam was confirmed by mechanical, morphometric, spectroscopic, and cytotoxic studies. The scaffold showed high biocompatibility both in vitro and in vivo. The first experiment proved that CS-based polyurethane efficiently allows the dynamic culturing of human fibroblast cells. Additionally, an in vivo study in a murine model indicated a complete integration of the scaffold to surrounding subcutaneous tissue as supported by the histological and histochemical assessments. The aforementioned results support the use of CS-g-PAEMA poly(saccharide-urethane) as a model of in vitro-engineered skin.
Collapse
Affiliation(s)
- Maykel González-Torres
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Ilian Haide Serrano-Aguilar
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Alejandro Cabrera-Wrooman
- Laboratorio de Tejido Conjuntivo, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Raúl Pichardo-Bahena
- Servicio de Anatomía Patológica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Yaaziel Melgarejo-Ramírez
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | | | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Clemente Ibarra
- Unidad de Ingeniería de Tejidos, Terapia celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| | - Cristina Velasquillo
- Conacyt & Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación "Luís Guillermo Ibarra", 14389, Ciudad de Mexico, Mexico.
| |
Collapse
|
6
|
Apryatina KV, Tkachuk EK, Smirnova LA. Influence of macromolecules conformation of chitosan on its graft polymerization with vinyl monomers and the copolymer properties. Carbohydr Polym 2020; 235:115954. [DOI: 10.1016/j.carbpol.2020.115954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/15/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
|
7
|
Panda PK, Yang JM, Chang YH, Su WW. Modification of different molecular weights of chitosan by p-Coumaric acid: Preparation, characterization and effect of molecular weight on its water solubility and antioxidant property. Int J Biol Macromol 2019; 136:661-667. [PMID: 31201915 DOI: 10.1016/j.ijbiomac.2019.06.082] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/01/2019] [Accepted: 06/11/2019] [Indexed: 11/30/2022]
Abstract
In this study, we modified three different molecular weights of chitosan by using p-Coumaric acid (p-CA) for enhancing their water solubility and antioxidant property. The chemical and physical properties of all native chitosan and its modified products were determined by Fourier transform spectroscopy (FTIR), ninhydrin assay, Folin-Ciocalteu reagent procedure, thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), high performance of liquid chromatography (HPLC), X-ray diffraction (XRD), water solubility and antioxidant property (both DPPH assay and reducing power assay). Results showed that the water solubility and antioxidant property of modified product decreases, when molecular weight of corresponding native chitosan increases. The obtained modified product had good solubility over a wide range of pH. Thermal analysis (TGA and DSC) showed the lower thermal stability of the modified product than that of corresponding native chitosan. XRD pattern revealed that the crystallinity was less in modified product than that of respective chitosan. The enhanced partially water solubility and antioxidant property of all modified chitosan products might be a great advantage, while applied in a wide range of applications in the form antioxidant property in food, biomedical and cosmetic industry.
Collapse
Affiliation(s)
- Pradeep Kumar Panda
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC
| | - Jen-Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC; Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC.
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC
| | - Wei-Wen Su
- Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC
| |
Collapse
|
8
|
Skotnikova DS, Mochalova AE, Smirnova LA. Sorption of Metal Ions by Chitosan Copolymers with Vinyl Monomers. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s1070427219050082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Novel Composite Membranes Based on Chitosan Copolymers with Polyacrylonitrile and Polystyrene: Physicochemical Properties and Application for Pervaporation Dehydration of Tetrahydrofuran. MEMBRANES 2019; 9:membranes9030038. [PMID: 30866529 PMCID: PMC6468362 DOI: 10.3390/membranes9030038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 11/16/2022]
Abstract
Pervaporation has been applied for tetrahydrofuran (THF) dehydration with novel composite membranes advanced by a thin selective layer composed of chitosan (CS) modified by copolymerization with vinyl monomers, acrylonitrile (AN) and styrene, in order to improve the chemical and mechanical stability of CS-based membranes. Composite membranes were developed by depositing a thin selective layer composed of CS copolymers onto a commercially-available porous support based on aromatic polysulfonamide (UPM-20®). The topography and morphology of the obtained materials were studied by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Thermal properties and stability were determined by coupled evolved gas analysis (EGA-MS). Transport properties were estimated in pervaporation dehydration of THF. The effect of operating parameters for the pervaporation dehydration of THF such as feed compositions and temperatures (295, 308 and 323 K) was evaluated. It was shown that CS modification with different vinyl monomers led to a difference in physical and transport properties. The composite membrane with the thin selective layer based on CS-PAN copolymer demonstrated optimal transport properties and exhibited the highest water content in the permeate with a reasonably high permeation flux.
Collapse
|