Muscle-specific activation of calpain system in hindlimb unloading rats and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse.
J Comp Physiol B 2018;
188:863-876. [PMID:
30039299 DOI:
10.1007/s00360-018-1176-z]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 01/28/2023]
Abstract
To determine whether the regulation of calpain system is involved in non-hibernators and hibernators in disused condition, the soleus (SOL) and extensor digitorum longus (EDL) muscles were used for investigating the muscle mass, the ratio of muscle wet weight/body weight (MWW/BW), fiber-type distribution, fiber cross-sectional area (CSA), and the protein expression of MuRF1, calpain-1, calpain-2, calpastatin, desmin, troponin T, and troponin C in hindlimb unloading rats and hibernating Daurian ground squirrels. The muscle mass, MWW/BW, and fiber CSA were found significantly decreased in SOL and EDL of hindlimb unloading rats, but unchanged in hibernating ground squirrels. The MuRF1 expression was increased in both SOL and EDL of unloading rats, while it was only increased in SOL, but maintained in EDL of hibernating ground squirrels. The expression levels of calpain-1 and calpain-2 were increased in different degrees in unloaded SOL and EDL in rats, while they were maintained in EDL and even reduced in SOL of hibernating ground squirrels. Besides, the expression of calpastatin was decreased in unloaded rats, but increased in hibernating ground squirrels. The desmin expression was decreased in unloaded rats, but maintained in hibernating squirrels. Interestingly, the levels of troponin T and troponin C were decreased in both SOL and EDL of unloaded rats, but increased in hibernating ground squirrels with muscle-type specificity. In conclusion, differential calpain activation and substrate-selective degradation in slow and fast muscles are involved in the mechanisms of muscle atrophy of unloaded rats and remarkable ability of muscle maintenance of hibernating ground squirrels.
Collapse