1
|
Jain K, Takuli A, Gupta TK, Gupta D. Rethinking Nanoparticle Synthesis: A Sustainable Approach vs. Traditional Methods. Chem Asian J 2024; 19:e202400701. [PMID: 39126206 DOI: 10.1002/asia.202400701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
This review portrays a comparison between green protocols and conventional nanoparticle (NP) synthesis strategies, highlighting each method's advantages and limitations. Various top-down and bottom-up methods in NP synthesis are described in detail. The green chemistry principles are emphasized for designing safe processes for nanomaterial synthesis. Among the green biogenic sources plant extracts, vitamins, enzymes, polysaccharides, fungi (Molds and mushrooms), bacteria, yeast, algae, and lichens are discussed. Limitations in the reproducibility of green protocols in terms of availability of raw material, variation in synthetic protocol, and selection of material due to geographical differences are elaborated. Finally, a conclusion is drawn utilizing green chemical principles, & a circular economy strategy to minimize waste generation, offering a promising framework for the synthesis of NPs emphasizing sustainability.
Collapse
Affiliation(s)
- Kavya Jain
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Anshika Takuli
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Tejendra K Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| | - Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, 201301, India
| |
Collapse
|
2
|
Chesnitskiy AV, Gayduk AE, Seleznev VA, Prinz VY. Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7781. [PMID: 36363368 PMCID: PMC9653604 DOI: 10.3390/ma15217781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In recent years, there has been explosive growth in the number of investigations devoted to the development and study of biomimetic micro- and nanorobots. The present review is dedicated to novel bioinspired magnetic micro- and nanodevices that can be remotely controlled by an external magnetic field. This approach to actuate micro- and nanorobots is non-invasive and absolutely harmless for living organisms in vivo and cell microsurgery, and is very promising for medicine in the near future. Particular attention has been paid to the latest advances in the rapidly developing field of designing polymer-based flexible and rigid magnetic composites and fabricating structures inspired by living micro-objects and organisms. The physical principles underlying the functioning of hybrid bio-inspired magnetic miniature robots, sensors, and actuators are considered in this review, and key practical applications and challenges are analyzed as well.
Collapse
Affiliation(s)
- Anton V. Chesnitskiy
- Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | | | | | | |
Collapse
|
3
|
Zamay TN, Prokopenko VS, Zamay SS, Lukyanenko KA, Kolovskaya OS, Orlov VA, Zamay GS, Galeev RG, Narodov AA, Kichkailo AS. Magnetic Nanodiscs-A New Promising Tool for Microsurgery of Malignant Neoplasms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1459. [PMID: 34072903 PMCID: PMC8227103 DOI: 10.3390/nano11061459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022]
Abstract
Magnetomechanical therapy is one of the most perspective directions in tumor microsurgery. According to the analysis of recent publications, it can be concluded that a nanoscalpel could become an instrument sufficient for cancer microsurgery. It should possess the following properties: (1) nano- or microsized; (2) affinity and specificity to the targets on tumor cells; (3) remote control. This nano- or microscalpel should include at least two components: (1) a physical nanostructure (particle, disc, plates) with the ability to transform the magnetic moment to mechanical torque; (2) a ligand-a molecule (antibody, aptamer, etc.) allowing the scalpel precisely target tumor cells. Literature analysis revealed that the most suitable nanoscalpel structures are anisotropic, magnetic micro- or nanodiscs with high-saturation magnetization and the absence of remanence, facilitating scalpel remote control via the magnetic field. Additionally, anisotropy enhances the transmigration of the discs to the tumor. To date, four types of magnetic microdiscs have been used for tumor destruction: synthetic antiferromagnetic P-SAF (perpendicular) and SAF (in-plane), vortex Py, and three-layer non-magnetic-ferromagnet-non-magnetic systems with flat quasi-dipole magnetic structures. In the current review, we discuss the biological effects of magnetic discs, the mechanisms of action, and the toxicity in alternating or rotating magnetic fields in vitro and in vivo. Based on the experimental data presented in the literature, we conclude that the targeted and remotely controlled magnetic field nanoscalpel is an effective and safe instrument for cancer therapy or theranostics.
Collapse
Affiliation(s)
- Tatiana N. Zamay
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia; (T.N.Z.); (K.A.L.); (O.S.K.); (G.S.Z.)
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | - Vladimir S. Prokopenko
- Institute of Physics and Informatics, Astafiev Krasnoyarsk State Pedagogical University, 660049 Krasnoyarsk, Russia;
| | - Sergey S. Zamay
- Molecular Electronics Department, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia;
| | - Kirill A. Lukyanenko
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia; (T.N.Z.); (K.A.L.); (O.S.K.); (G.S.Z.)
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
| | - Olga S. Kolovskaya
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia; (T.N.Z.); (K.A.L.); (O.S.K.); (G.S.Z.)
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | - Vitaly A. Orlov
- School of Engineering Physics and Radio Electronics, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia;
- Kirensky Institute of Physics Federal Research Center KSC Siberian Branch Russian Academy of Sciences, Akademgorodok 50, bld. 38, 660036 Krasnoyarsk, Russia
| | - Galina S. Zamay
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia; (T.N.Z.); (K.A.L.); (O.S.K.); (G.S.Z.)
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | | | - Andrey A. Narodov
- Traumatology Orthopedics and Neurosurgery Department, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia;
| | - Anna S. Kichkailo
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenecky, 660029 Krasnoyarsk, Russia; (T.N.Z.); (K.A.L.); (O.S.K.); (G.S.Z.)
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center, Krasnoyarsk Science Center Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| |
Collapse
|
4
|
Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A. Targeted Magnetic Nanotheranostics of Cancer. Molecules 2017; 22:E975. [PMID: 28604617 PMCID: PMC6152710 DOI: 10.3390/molecules22060975] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Current advances in targeted magnetic nanotheranostics are summarized in this review. Unique structural, optical, electronic and thermal properties of magnetic materials in nanometer scale are attractive in the field of biomedicine. Magnetic nanoparticles functionalized with therapeutic molecules, ligands for targeted delivery, fluorescent and other chemical agents can be used for cancer diagnostic and therapeutic purposes. High selectivity, small size, and low immunogenicity of synthetic nucleic acid aptamers make them attractive delivery agents for therapeutic purposes. Properties, production and functionalization of magnetic nanoparticles and aptamers as ligands for targeted delivery are discussed herein. In recent years, magnetic nanoparticles have been widely used in diagnostic methods, such as scintigraphy, single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), and Raman spectroscopy. Therapeutic purposes of magnetic nanoconstructions are also promising. They are used for effective drug delivery, magnetic mediated hypertermia, and megnetodynamic triggering of apoptosis. Thus, magnetic nanotheranostics opens a new venue for complex differential diagnostics, and therapy of metastatic cancer.
Collapse
Affiliation(s)
- Irina Belyanina
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
| | - Olga Kolovskaya
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Sergey Zamay
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Ana Gargaun
- Independent Researcher Vancouver, Vancouver, BC V6K 1C4, Canada.
| | - Tatiana Zamay
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Anna Kichkailo
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| |
Collapse
|
5
|
Zamay TN, Zamay GS, Belyanina IV, Zamay SS, Denisenko VV, Kolovskaya OS, Ivanchenko TI, Grigorieva VL, Garanzha IV, Veprintsev DV, Glazyrin YE, Shabanov AV, Prinz VY, Seleznev VA, Sokolov AE, Prokopenko VS, Kim PD, Gargaun A, Berezovski MV, Zamay AS. Noninvasive Microsurgery Using Aptamer-Functionalized Magnetic Microdisks for Tumor Cell Eradication. Nucleic Acid Ther 2016; 27:105-114. [PMID: 27923103 DOI: 10.1089/nat.2016.0634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Magnetomechanical cell disruption using nano- and microsized structures is a promising biomedical technology used for noninvasive elimination of diseased cells. It applies alternating magnetic field (AMF) for ferromagnetic microdisks making them oscillate and causing cell membrane disruption with cell death followed by apoptosis. In this study, we functionalized the magnetic microdisks with cell-binding DNA aptamers and guided the microdisks to recognize cancerous cells in a mouse tumor in vivo. Only 10 min of the treatment with a 100 Hz AMF was enough to eliminate cancer cells from a malignant tumor. Our results demonstrate a good perspective of using aptamer-modified magnetic microdisks for noninvasive microsurgery for tumors.
Collapse
Affiliation(s)
- Tatiana N Zamay
- 1 Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University , Krasnoyarsk, Russia .,2 Siberian Federal University , Krasnoyarsk, Russia
| | - Galina S Zamay
- 1 Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University , Krasnoyarsk, Russia .,3 Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| | - Irina V Belyanina
- 1 Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University , Krasnoyarsk, Russia .,2 Siberian Federal University , Krasnoyarsk, Russia
| | - Sergey S Zamay
- 3 Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| | - Valery V Denisenko
- 3 Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia .,4 Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| | - Olga S Kolovskaya
- 1 Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University , Krasnoyarsk, Russia .,3 Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| | - Tatiana I Ivanchenko
- 3 Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| | - Valentina L Grigorieva
- 1 Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University , Krasnoyarsk, Russia .,2 Siberian Federal University , Krasnoyarsk, Russia
| | - Irina V Garanzha
- 2 Siberian Federal University , Krasnoyarsk, Russia .,3 Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| | - Dmitry V Veprintsev
- 1 Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University , Krasnoyarsk, Russia .,3 Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| | - Yury E Glazyrin
- 1 Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University , Krasnoyarsk, Russia
| | - Alexandr V Shabanov
- 3 Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| | - Viktor Y Prinz
- 5 The Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
| | - Vladimir A Seleznev
- 5 The Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
| | - Alexey E Sokolov
- 6 Institute of Physics, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| | | | - Petr D Kim
- 3 Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| | - Ana Gargaun
- 8 Department of Chemistry and Biomolecular Sciences, University of Ottawa , Ottawa, Canada
| | - Maxim V Berezovski
- 8 Department of Chemistry and Biomolecular Sciences, University of Ottawa , Ottawa, Canada
| | - Anna S Zamay
- 1 Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University , Krasnoyarsk, Russia .,3 Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences , Krasnoyarsk, Russia
| |
Collapse
|