1
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Zhang X, Lee W, Bian JS. Recent Advances in the Study of Na +/K +-ATPase in Neurodegenerative Diseases. Cells 2022; 11:cells11244075. [PMID: 36552839 PMCID: PMC9777075 DOI: 10.3390/cells11244075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Na+/K+-ATPase (NKA), a large transmembrane protein, is expressed in the plasma membrane of most eukaryotic cells. It maintains resting membrane potential, cell volume and secondary transcellular transport of other ions and neurotransmitters. NKA consumes about half of the ATP molecules in the brain, which makes NKA highly sensitive to energy deficiency. Neurodegenerative diseases (NDDs) are a group of diseases characterized by chronic, progressive and irreversible neuronal loss in specific brain areas. The pathogenesis of NDDs is sophisticated, involving protein misfolding and aggregation, mitochondrial dysfunction and oxidative stress. The protective effect of NKA against NDDs has been emerging gradually in the past few decades. Hence, understanding the role of NKA in NDDs is critical for elucidating the underlying pathophysiology of NDDs and identifying new therapeutic targets. The present review focuses on the recent progress involving different aspects of NKA in cellular homeostasis to present in-depth understanding of this unique protein. Moreover, the essential roles of NKA in NDDs are discussed to provide a platform and bright future for the improvement of clinical research in NDDs.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weithye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
3
|
Na,K-ATPase Acts as a Beta-Amyloid Receptor Triggering Src Kinase Activation. Cells 2022; 11:cells11172753. [PMID: 36078160 PMCID: PMC9455167 DOI: 10.3390/cells11172753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Beta-amyloid (Aβ) has a dual role, both as an important factor in the pathology of Alzheimer's disease and as a regulator in brain physiology. The inhibitory effect of Aβ42 oligomers on Na,K-ATPase contributes to neuronal dysfunction in Alzheimer's disease. Still, the physiological role of the monomeric form of Aβ42 interaction with Na,K-ATPase remains unclear. We report that Na,K-ATPase serves as a receptor for Aβ42 monomer, triggering Src kinase activation. The co-localization of Aβ42 with α1- and β1-subunits of Na,K-ATPase, and Na,K-ATPase with Src kinase in SH-SY5Y neuroblastoma cells, was observed. Treatment of cells with 100 nM Aβ42 causes Src kinase activation, but does not alter Na,K-ATPase transport activity. The interaction of Aβ42 with α1β1 Na,K-ATPase isozyme leads to activation of Src kinase associated with the enzyme. Notably, prevention of Na,K-ATPase:Src kinase interaction by a specific inhibitor pNaKtide disrupts the Aβ-induced Src kinase activation. Stimulatory effect of Aβ42 on Src kinase was lost under hypoxic conditions, which was similar to the effect of specific Na,K-ATPase ligands, the cardiotonic steroids. Our findings identify Na,K-ATPase as a Aβ42 receptor, thus opening a prospect on exploring the physiological and pathological Src kinase activation caused by Aβ42 in the nervous system.
Collapse
|
4
|
Pinz MP, Vogt AG, da Costa Rodrigues K, Dos Reis AS, Duarte LFB, Fronza MG, Domingues WB, Blodorn EB, Alves D, Campos VF, Savegnago L, Wilhelm EA, Luchese C. Effect of a purine derivative containing selenium to improve memory decline and anxiety through modulation of the cholinergic system and Na +/K +-ATPase in an Alzheimer's disease model. Metab Brain Dis 2021; 36:871-888. [PMID: 33651275 DOI: 10.1007/s11011-021-00703-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a worldwide problem, and there are currently no treatments that can stop this disease. To investigate the binding affinity of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) with acetylcholinesterase (AChE), to verify the effects of FSP in an AD model in mice and to evaluate the toxicological potential of this compound in mice. The binding affinity of FSP with AChE was investigated by molecular docking analyses. The AD model was induced by streptozotocin (STZ) in Swiss mice after FSP treatment (1 mg/kg, intragastrically (i.g.)), 1st-10th day of the experimental protocol. Anxiety was evaluated in an elevated plus maze test, and memory impairment was evaluated in the Y-maze, object recognition and step-down inhibitory avoidance tasks. The cholinergic system was investigated based on by looking at expression and activity of AChE and expression of choline acetyltransferase (ChAT). We evaluated expression and activity of Na+/K+-ATPase. For toxicological analysis, animals received FSP (300 mg/kg, i.g.) and aspartate aminotransferase, alanine aminotransferase activities were determined in plasma and δ-aminolevulinate dehydratase activity in brain and liver. FSP interacts with residues of the AChE active site. FSP mitigated the induction of anxiety and memory impairment caused by STZ. FSP protected cholinergic system dysfunction and reduction of activity and expression of Na+/K+-ATPase. FSP did not modify toxicological parameters evaluated and did not cause the death of mice. FSP protected against anxiety, learning and memory impairment with involvement of the cholinergic system and Na+/K+-ATPase in these actions.
Collapse
Affiliation(s)
- Mikaela Peglow Pinz
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Ane Gabriela Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Karline da Costa Rodrigues
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Angélica Schiavom Dos Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Luis Fernando Barbosa Duarte
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Mariana Gallio Fronza
- Programa de Pós-Graduação em Biotecnologia, GPN, CDTec, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - William Borges Domingues
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Eduardo Bierhaus Blodorn
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Vinicius Farias Campos
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação em Biotecnologia, GPN, CDTec, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Ethel Antunes Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil.
| |
Collapse
|
5
|
Che L, Yang CL, Chen Y, Wu ZL, Du ZB, Wu JS, Gan CL, Yan SP, Huang J, Guo NJ, Lin YC, Lin ZN. Mitochondrial redox-driven mitofusin 2 S-glutathionylation promotes neuronal necroptosis via disrupting ER-mitochondria crosstalk in cadmium-induced neurotoxicity. CHEMOSPHERE 2021; 262:127878. [PMID: 33182097 DOI: 10.1016/j.chemosphere.2020.127878] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress and mitochondrial dysfunction are known to affect the structural and functional damage in the neural system. Cadmium (Cd) is an environmental contaminant that is widely found in numerous environmental matrices and exhibits potential neurotoxic risk. However, it remains unclear how mitochondrial redox status induces, and whether Cd destabilizes, the ER-mitochondria crosstalk to have a toxic effect on the nervous system. Herein, in our present study, bioinformatics analysis revealed an important role of protein interaction and mitochondrial machinery in brain samples from Alzheimer's disease (AD) patients. Furthermore, we established a neurotoxicity model in vivo and in vitro induced by cadmium chloride (CdCl2). We demonstrated that CdCl2 exposure disrupts the balance in mitochondrial redox represented by enhanced mitochondrial ROS (mitoROS) levels, which enhance mitofusin 2 (Mfn2) S-glutathionylation and interrupt the mitochondria-associated ER membranes (MAMs) for crosstalk between the ER and mitochondria to induce neuronal necroptosis. Mechanistically, it was shown that CdCl2 exposure significantly enhances the mitochondria-associated degradation (MAD) of Mfn2 via S-glutathionylation, which inhibits Mfn2 localization to the MAMs and subsequently leads to the formation of the RIPK1-RIPK3-p-MLKL complex (a key component of the necrosome) at MAMs, to promote neuronal necroptosis. Furthermore, the glutaredoxin 1 (Grx1) catalyzed and Mfn2 overexpression restored S-glu-Mfn2, MAMs perturbation, necrosome formation, and necroptosis in neurons induced by CdCl2 exposure in vitro. Moreover, the intervention with antioxidants to reduce mitochondrial redox, such as N-acetyl-l-cysteine (NAC) and mitochondria-targeted antioxidant Mito-TEMPO, reduced the S-glutathionylation of Mfn2 involved in the antagonism of CdCl2-induced necroptosis and neurotoxicity in vivo and in vitro. Taken together, our results are the first time to demonstrate that S-glutathionylation of Mfn2 promotes neuronal necroptosis via disruption of ER-mitochondria crosstalk in CdCl2-induced neurotoxicity, providing the novel mechanistic insight into how hazardous chemical-induced adverse effects in various organs and tissues could be interpreted by intraorganellar pathways under the control of MAMs components in neurons.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chuan-Li Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yu Chen
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zi-Li Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Cong-Ling Gan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Si-Ping Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jing Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ni-Jun Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
6
|
Petrushanko IY, Mitkevich VA, Makarov AA. Molecular Mechanisms of the Redox Regulation of the Na,K-ATPase. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920050139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Yoneda JS, Sebinelli HG, Itri R, Ciancaglini P. Overview on solubilization and lipid reconstitution of Na,K-ATPase: enzyme kinetic and biophysical characterization. Biophys Rev 2020; 12:49-64. [PMID: 31955383 DOI: 10.1007/s12551-020-00616-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Na,K-ATPase is a membrane protein which plays a vital role. It pumps Na+ and K+ ions across the cellular membranes using energy from ATP hydrolysis, and is responsible for maintaining the osmotic equilibrium and generating the membrane potential. Moreover, Na,K-ATPase has also been involved in cell signaling, interacting with partner proteins. Cardiotonic steroids bind specifically to Na,K-ATPase triggering a number of signaling pathways. Because of its importance, many efforts have been employed to study the structure and function of this protein. Difficulties associated with its removal from natural membranes and the concomitant search for appropriate replacement conditions to keep the protein in solution have presented a challenge that had to be overcome prior to carrying out biophysical and biochemical studies in vitro. In this review, we summarized all of the methods and techniques applied by our group in order to obtain information about Na,K-ATPase in respect to solubilization, reconstitution into mimetic system, influence of lipid composition, stability, oligomerization, and aggregation.
Collapse
Affiliation(s)
- Juliana Sakamoto Yoneda
- Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil.
| | - Heitor Gobbi Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Rosangela Itri
- Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| |
Collapse
|
8
|
Dyer RR, Ford KI, Robinson RAS. The roles of S-nitrosylation and S-glutathionylation in Alzheimer's disease. Methods Enzymol 2019; 626:499-538. [PMID: 31606089 PMCID: PMC6908309 DOI: 10.1016/bs.mie.2019.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a debilitating dementia with complex pathophysiological alterations including modifications to endogenous cysteine. S-nitrosylation (SNO) is a well-studied posttranslational modification (PTM) in the context of AD while S-glutathionylation (PSSG) remains less studied. Excess reactive oxygen and reactive nitrogen species (ROS/RNS) directly or indirectly generate SNO and PSSG. SNO is dysregulated in AD and plays a pervasive role in processes such as protein function, cell signaling, metabolism, and apoptosis. Despite some studies into the role of SNO in AD, multiple identified SNO proteins lack deep investigation and SNO modifications outside of brain tissues are limited, leaving the full role of SNO in AD to be elucidated. PSSG homeostasis is perturbed in AD and may affect a myriad of cellular processes. Here we overview the role of nitric oxide (NO) in AD, discuss proteomic methodologies to investigate SNO and PSSG, and review SNO and PSSG in AD. A more thorough understanding of SNO, PSSG, and other cysteinyl PTMs in AD will be helpful for the development of novel therapeutics against neurodegenerative diseases.
Collapse
Affiliation(s)
- Ryan R Dyer
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Katarena I Ford
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Memory & Alzheimer's Center, Nashville, TN, United States; Vanderbilt Institute of Chemical Biology, Nashville, TN, United States; Vanderbilt Brain Institute, Nashville, TN, United States.
| |
Collapse
|
9
|
Glutathionylation: a regulatory role of glutathione in physiological processes. Arh Hig Rada Toksikol 2018; 69:1-24. [DOI: 10.2478/aiht-2018-69-2966] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Abstract
Glutathione (γ-glutamyl-cysteinyl-glycine) is an intracellular thiol molecule and a potent antioxidant that participates in the toxic metabolism phase II biotransformation of xenobiotics. It can bind to a variety of proteins in a process known as glutathionylation. Protein glutathionylation is now recognised as one of important posttranslational regulatory mechanisms in cell and tissue physiology. Direct and indirect regulatory roles in physiological processes include glutathionylation of major transcriptional factors, eicosanoids, cytokines, and nitric oxide (NO). This review looks into these regulatory mechanisms through examples of glutathione regulation in apoptosis, vascularisation, metabolic processes, mitochondrial integrity, immune system, and neural physiology. The focus is on the physiological roles of glutathione beyond biotransformational metabolism.
Collapse
|