1
|
Toporkova YY, Smirnova EO, Gorina SS. Epoxyalcohol Synthase Branch of Lipoxygenase Cascade. Curr Issues Mol Biol 2024; 46:821-841. [PMID: 38248355 PMCID: PMC10813956 DOI: 10.3390/cimb46010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Oxylipins are one of the most important classes of bioregulators, biosynthesized through the oxidative metabolism of unsaturated fatty acids in various aerobic organisms. Oxylipins are bioregulators that maintain homeostasis at the cellular and organismal levels. The most important oxylipins are mammalian eicosanoids and plant octadecanoids. In plants, the main source of oxylipins is the lipoxygenase cascade, the key enzymes of which are nonclassical cytochromes P450 of the CYP74 family, namely allene oxide synthases (AOSs), hydroperoxide lyases (HPLs), and divinyl ether synthases (DESs). The most well-studied plant oxylipins are jasmonates (AOS products) and traumatin and green leaf volatiles (HPL products), whereas other oxylipins remain outside of the focus of researchers' attention. Among them, there is a large group of epoxy hydroxy fatty acids (epoxyalcohols), whose biosynthesis has remained unclear for a long time. In 2008, the first epoxyalcohol synthase of lancelet Branchiostoma floridae, BfEAS (CYP440A1), was discovered. The present review collects data on EASs discovered after BfEAS and enzymes exhibiting EAS activity along with other catalytic activities. This review also presents the results of a study on the evolutionary processes possibly occurring within the P450 superfamily as a whole.
Collapse
Affiliation(s)
- Yana Y. Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia; (E.O.S.); (S.S.G.)
| | | | | |
Collapse
|
2
|
Guzzo F, Buommino E, Landrum L, Russo R, Lembo F, Fiorentino A, D’Abrosca B. Phytochemical Investigation of Myrcianthes cisplatensis: Structural Characterization of New p-Coumaroyl Alkylphloroglucinols and Antimicrobial Evaluation against Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:1046. [PMID: 36903907 PMCID: PMC10005737 DOI: 10.3390/plants12051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Species of Myrtaceae Juss., the ninth largest family of flowering plants, are a valuable source of bioactive specialized metabolites. A leading position belongs to phloroglucinol derivatives, thanks to their unusual structural features and biological and pharmacological properties. Myrcianthes cisplatensis (Cambess.) O. Berg, a common tree on the banks of rivers and streams of Uruguay, southern Brazil, and northern Argentina, with aromatic leaves, is known as a diuretic, febrifuge, tonic, and good remedy for lung and bronchial diseases. Despite knowledge about traditional use, few data on its phytochemical properties have been reported in the literature. The methanol extract of M. cisplatensis, grown in Arizona, USA, was first partitioned between dichloromethane and water and then with ethyl acetate. The enriched fractions were evaluated using a broth microdilution assay against Staphylococcus aureus ATCC 29213 and 43300 (methicillin-resistant S. aureus (MRSA)). The potential antimicrobial activity seemed to increase in the dichloromethane extract, with a MIC value of 16 µg/mL against both strains. Following a bio-guided approach, chromatographic techniques allowed for isolating three coumarin derivatives, namely endoperoxide G3, catechin, and quercitrin, and four new p-coumaroyl alkylphloroglucinol glucosides, named p-coumaroylmyrciacommulone A-D. Their structures were characterized through spectroscopic techniques: 2D-NMR experiments (HSQC, HMBC, and HSQC-TOCSY) and spectrometric analyses (HR-MS). The antimicrobial assessment of pure compounds against S. aureus ATCC 29213 and ATCC 43300 demonstrated the best activity for p-coumaroylmyrciacommulone C and D with the growth inhibition of 50% at 32 µg/mL against both strains of S. aureus.
Collapse
Affiliation(s)
- Francesca Guzzo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Elisabetta Buommino
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Leslie Landrum
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4108, USA
| | - Rosita Russo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Francesca Lembo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Brigida D’Abrosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies-DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
3
|
Gorina SS, Mukhtarova LS, Iljina TM, Toporkova YY, Grechkin AN. Detection of divinyl ether synthase CYP74H2 biosynthesizing (11Z)-etheroleic and (1'Z)-colnelenic acids in asparagus (Asparagus officinalis L.). PHYTOCHEMISTRY 2022; 200:113212. [PMID: 35460712 DOI: 10.1016/j.phytochem.2022.113212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Divinyl ether synthases (DESs) are the enzymes occurring in numerous plant species and catalysing the dehydration of fatty acid hydroperoxides to divinyl ether oxylipins, playing self-defensive and antipathogenic roles in plants. Previously, the DES activities and divinyl ethers were detected in some monocotyledonous plants, including the asparagus (Asparagus officinalis L.). The cloning of the open reading frame of the CYP74H2 gene of asparagus and catalytic properties of the recombinant CYP74H2 protein are described in the present work. The CYP74H2 utilized the 13(S)-hydroperoxide of linoleic acid (13(S)-HPOD) as a preferred substrate and specifically converted it to the divinyl ether, (9Z,11Z)-12-[(1'E)-hexenyloxy]-9,11-dodecadienoic acid, (11Z)-etheroleic acid. The second most efficient substrate after the 13(S)-HPOD was the 9(S)-hydroperoxide of α-linolenic acid (9(S)-HPOT), which was converted to the previously undescribed product, (1'Z)-colnelenic acid. The 13(S)-hydroperoxide of α-linolenic acid (13(S)-HPOT) and 9(S)-hydroperoxide of linoleic acid (9(S)-HPOD) were less efficient substrates for CYP74H2. Both 13(S)-HPOT and 9(S)-HPOD were transformed to divinyl ethers, (11Z)-etherolenic and (1'Z)-colneleic acids, respectively. The CYP74H2 is a second cloned monocotyledonous DES after the garlic CYP74H1 and the first DES biosynthesizing the (1'Z)-colneleic and (1'Z)-colnelenic acids.
Collapse
Affiliation(s)
- Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Tatiana M Iljina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| |
Collapse
|
4
|
Gene Expression Analysis of Potato (Solanum tuberosum L.) Lipoxygenase Cascade and Oxylipin Signature under Abiotic Stress. PLANTS 2022; 11:plants11050683. [PMID: 35270153 PMCID: PMC8912661 DOI: 10.3390/plants11050683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
The metabolism of polyunsaturated fatty acids through the lipoxygenase-catalyzed step and subsequent reactions is referred to as the lipoxygenase (LOX) pathway. The components of this system, such as jasmonates, are involved in growth, development and defense reactions of plants. In this report, we focus on dynamics of expression of different LOX pathway genes and activities of target enzymes with three abiotic stress factors: darkness, salinity and herbicide toxicity. To obtain a more complete picture, the expression profiles of marker genes for salicylic acid, abscisic acid, ethylene, auxin and gibberellin-dependent signaling systems under the same stresses were also analyzed. The gene expression in Solanum tuberosum plants was analyzed using qRT-PCR, and we found that the LOX-cascade-related genes responded to darkness, salinity and herbicide toxicity in different ways. We detected activation of a number of 9-LOX pathway genes; however, in contrast to studies associated with biotic stress (infection), the 9-divinyl ether synthase branch of the LOX cascade was inhibited under all three stresses. GC-MS analysis of the oxylipin profiles also showed the main activity of the 9-LOX-cascade-related enzymes after treatment with herbicide and darkness.
Collapse
|
5
|
Gorshkov VY, Toporkova YY, Tsers ID, Smirnova EO, Ogorodnikova AV, Gogoleva NE, Parfirova OI, Petrova OE, Gogolev YV. Differential modulation of the lipoxygenase cascade during typical and latent Pectobacterium atrosepticum infections. ANNALS OF BOTANY 2022; 129:271-286. [PMID: 34417794 PMCID: PMC8835645 DOI: 10.1093/aob/mcab108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Plant diseases caused by Pectobacterium atrosepticum are often accompanied by extensive rot symptoms. In addition, these bacteria are able to interact with host plants without causing disease for long periods, even throughout several host plant generations. There is, to date, no information on the comparative physiology/biochemistry of symptomatic and asymptomatic plant-P. atrosepticum interactions. Typical (symptomatic) P. atrosepticum infections are associated with the induction of plant responses mediated by jasmonates, which are one of the products of the lipoxygenase cascade that gives origin to many other oxylipins with physiological activities. In this study, we compared the functioning of the lipoxygenase cascade following typical and latent (asymptomatic) infections to gain better insight into the physiological basis of the asymptomatic and antagonistic coexistence of plants and pectobacteria. METHODS Tobacco plants were mock-inoculated (control) or infected with the wild type P. atrosepticum (typical infection) or its coronafacic acid-deficient mutant (latent infection). The expression levels of the target lipoxygenase cascade-related genes were assessed by Illumina RNA sequencing. Oxylipin profiles were analysed by GC-MS. With the aim of revising the incorrect annotation of one of the target genes, its open reading frame was cloned to obtain the recombinant protein, which was further purified and characterized using biochemical approaches. KEY RESULTS The obtained data demonstrate that when compared to the typical infection, latent asymptomatic P. atrosepticum infection is associated with (and possibly maintained due to) decreased levels of 9-lipoxygenase branch products and jasmonic acid and increased level of cis-12-oxo-10,15-phytodienoic acid. The formation of 9-oxononanoic acid and epoxyalcohols in tobacco plants was based on the identification of the first tobacco hydroperoxide lyase (HPL) with additional epoxyalcohol synthase (EAS) activity. CONCLUSIONS Our results contribute to the hypothesis of the oxylipin signature, indicating that different types of plant interactions with a particular pathogen are characterized by the different oxylipin profiles of the host plant. In addition, the tobacco LOC107825278 gene was demonstrated to encode an NtHPL (CYP74C43) enzyme yielding volatile aldehydes and aldoacids (HPL products) as well as oxiranyl carbinols (EAS products).
Collapse
Affiliation(s)
- Vladimir Y Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Ivan D Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| | - Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Anna V Ogorodnikova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| | - Olga I Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Olga E Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| |
Collapse
|