1
|
Ismail TM, Crick RG, Du M, Shivkumar U, Carnell A, Barraclough R, Wang G, Cheng Z, Yu W, Platt-Higgins A, Nixon G, Rudland PS. Targeted Destruction of S100A4 Inhibits Metastasis of Triple Negative Breast Cancer Cells. Biomolecules 2023; 13:1099. [PMID: 37509135 PMCID: PMC10377353 DOI: 10.3390/biom13071099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Most patients who die of cancer do so from its metastasis to other organs. The calcium-binding protein S100A4 can induce cell migration/invasion and metastasis in experimental animals and is overexpressed in most human metastatic cancers. Here, we report that a novel inhibitor of S100A4 can specifically block its increase in cell migration in rat (IC50, 46 µM) and human (56 µM) triple negative breast cancer (TNBC) cells without affecting Western-blotted levels of S100A4. The moderately-weak S100A4-inhibitory compound, US-10113 has been chemically attached to thalidomide to stimulate the proteasomal machinery of a cell. This proteolysis targeting chimera (PROTAC) RGC specifically eliminates S100A4 in the rat (IC50, 8 nM) and human TNBC (IC50, 3.2 nM) cell lines with a near 20,000-fold increase in efficiency over US-10113 at inhibiting cell migration (IC50, 1.6 nM and 3.5 nM, respectively). Knockdown of S100A4 in human TNBC cells abolishes this effect. When PROTAC RGC is injected with mouse TNBC cells into syngeneic Balb/c mice, the incidence of experimental lung metastases or local primary tumour invasion and spontaneous lung metastasis is reduced in the 10-100 nM concentration range (Fisher's Exact test, p ≤ 0.024). In conclusion, we have established proof of principle that destructive targeting of S100A4 provides the first realistic chemotherapeutic approach to selectively inhibiting metastasis.
Collapse
Affiliation(s)
- Thamir M. Ismail
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Rachel G. Crick
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Min Du
- Department of Clinical Infection, Microbiology and Immunity, University of Liverpool, Liverpool L69 7ZB, UK; (M.D.); (G.W.)
| | - Uma Shivkumar
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Andrew Carnell
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Roger Barraclough
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunity, University of Liverpool, Liverpool L69 7ZB, UK; (M.D.); (G.W.)
| | - Zhenxing Cheng
- Medical School, Southeast University, Nanjing 230032, China; (Z.C.); (W.Y.)
- Department of Gastroenterology, First Affiliated Hospital, Anhui Medical University, Hefei 210009, China
| | - Weiping Yu
- Medical School, Southeast University, Nanjing 230032, China; (Z.C.); (W.Y.)
| | - Angela Platt-Higgins
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| | - Gemma Nixon
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZB, UK; (R.G.C.); (U.S.); (A.C.)
| | - Philip S. Rudland
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool L69 7ZB, UK; (T.M.I.); (R.B.); (A.P.-H.)
| |
Collapse
|
2
|
Liu Y, Yang C, Zhao Y, Chi Q, Wang Z, Sun B. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging (Albany NY) 2019; 11:12328-12344. [PMID: 31866582 PMCID: PMC6949057 DOI: 10.18632/aging.102575] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/24/2019] [Indexed: 11/25/2022]
Abstract
Methyltransferase-like 1 (METTL1) mediated 7-methylguanosine (m7G) is crucial for the regulation of chemoresistance in cancer treatment. However, the role of METTL1 in regulating chemoresistance of colon cancer (CC) cells to cisplatin is still unclear. This study established the cisplatin-resistant CC (CR-CC) cells and found that METTL1 was low-expressed in CR-CC cells compared to their paired cisplatin-sensitive CC (CS-CC) cells. Besides, overexpressed METTL1 enhanced the cytotoxic effects of cisplatin on CR-CC cells. In addition, miR-149-3p was the downstream target of METTL1, which could be positively regulated by METTL1. Further results validated that miR-149-3p was low-expressed in CR-CC cells comparing to the CS-CC cells. In addition, the promoting effects of overexpressed METTL1 on cisplatin induced CR-CC cell death were abrogated by synergistically knocking down miR-149-3p. Furthermore, S100A4/p53 axis was the downstream target of METTL1 and miR-149-3p, and either overexpressed METTL1 or miR-149-3p increased p53 protein levels in CR-CC cells, which were reversed by upregulating S100A4. Similarly, the promoting effects of overexpressed METTL1 on cisplatin-induced CR-CC cell death were abrogated by overexpressing S100A4. Taken together, overexpression of METTL1 sensitized CR-CC cells to cisplatin by modulating miR-149-3p/S100A4/p53 axis.
Collapse
Affiliation(s)
- Yang Liu
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Chunyan Yang
- Department of Oral and Maxillofacial Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Yong Zhao
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Qiang Chi
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Zhen Wang
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| | - Boshi Sun
- The 3rd Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilong Jiang, China
| |
Collapse
|