1
|
Parmanbek N, Aimanova NA, Mashentseva AA, Barsbay M, Abuova FU, Nurpeisova DT, Jakupova ZY, Zdorovets MV. e-Beam and γ-rays Induced Synthesis and Catalytic Properties of Copper Nanoclusters-Deposited Composite Track-Etched Membranes. MEMBRANES 2023; 13:659. [PMID: 37505025 PMCID: PMC10385425 DOI: 10.3390/membranes13070659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) track-etched hybrid membranes. PET track-etched membranes (TeMs) with an average pore size of ~400 nm were grafted by functional acrylic acid (AA) monomer under electron beam irradiation after oxidation with H2O2/UV system. The radiation dose varied between 46 and 200 kGy. For the deposition of copper NCs, poly(acrylic acid) (PAA)-grafted membranes saturated with Cu(II) ions were irradiated either by electron beam or γ-rays to obtain copper-based NCs for the catalytic degradation of MB. Irradiation to 100 kGy with accelerated electrons resulted in the formation of small and uniform copper hydroxide (Cu(OH)2) nanoparticles homogeneously distributed over the entire volume of the template. On the other hand, irradiation under γ-rays yielded composites with copper NCs with a high degree of crystallinity. However, the size of the deposited NCs obtained by γ-irradiation was not uniform. Nanoparticles with the highest uniformity were obtained at 150 kGy dose. Detailed analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirmed the loading of copper nanoparticles with an average size of 100 nm on the inner walls of nanochannels and on the surface of PET TeMs. Under UV light irradiation, composite membranes loaded with NCs exhibited high photocatalytic activity. It was determined that the highest catalytic activity was observed in the presence of Cu(OH)2@PET-g-PAA membrane obtained at 250 kGy. More than 91.9% of the initial dye was degraded when this hybrid membrane was employed for 180 min, while only 83.9% of MB was degraded under UV light using Cu@PET-g-PAA membrane. Cu(OH)2@PET-g-PAA membranes obtained under electron beam irradiation demonstrated a higher photocatalytic activity compared to Cu@PET-g-PAA membranes attained by γ-rays.
Collapse
Affiliation(s)
- Nursanat Parmanbek
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Nurgulim A Aimanova
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
| | - Anastassiya A Mashentseva
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Fatima U Abuova
- Department of Nuclear Physics, New Materials and Technologies, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Dinara T Nurpeisova
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Zhanar Ye Jakupova
- Department of Chemistry, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Maxim V Zdorovets
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Intelligent Information Technologies, The Ural Federal University, 620002 Yekaterinburg, Russia
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
2
|
Demchenko V, Mamunya Y, Kobylinskyi S, Riabov S, Naumenko K, Zahorodnia S, Povnitsa O, Rybalchenko N, Iurzhenko M, Adamus G, Kowalczuk M. Structure-Morphology-Antimicrobial and Antiviral Activity Relationship in Silver-Containing Nanocomposites Based on Polylactide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123769. [PMID: 35744897 PMCID: PMC9227702 DOI: 10.3390/molecules27123769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022]
Abstract
Green synthesis of silver-containing nanocomposites based on polylactide (PLA) was carried out in two ways. With the use of green tea extract, Ag+ ions were reduced to silver nanoparticles with their subsequent introduction into the PLA (mechanical method) and Ag+ ions were reduced in the polymer matrix of PLA-AgPalmitate (PLA-AgPalm) (in situ method). Structure, morphology and thermophysical properties of nanocomposites PLA-Ag were studied by FTIR spectroscopy, wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) methods. The antimicrobial, antiviral, and cytotoxic properties were studied as well. It was found that the mechanical method provides the average size of silver nanoparticles in the PLA of about 16 nm, while in the formation of samples by the in situ method their average size was 3.7 nm. The strong influence of smaller silver nanoparticles (3.7 nm) on the properties of nanocomposites was revealed, as with increasing nanosilver concentration the heat resistance and glass transition temperature of the samples decreases, while the influence of larger particles (16 nm) on these parameters was not detected. It was shown that silver-containing nanocomposites formed in situ demonstrate antimicrobial activity against gram-positive bacterium S. aureus, gram-negative bacteria E. coli, P. aeruginosa, and the fungal pathogen of C. albicans, and the activity of the samples increases with increasing nanoparticle concentration. Silver-containing nanocomposites formed by the mechanical method have not shown antimicrobial activity. The relative antiviral activity of nanocomposites obtained by two methods against influenza A virus, and adenovirus serotype 2 was also revealed. The obtained nanocomposites were not-cytotoxic, and they did not inhibit the viability of MDCK or Hep-2 cell cultures.
Collapse
Affiliation(s)
- Valeriy Demchenko
- Department of Polymer Modification, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48. Kharkivske Shose, 02160 Kyiv, Ukraine; (Y.M.); (S.K.); (S.R.); (M.I.)
- Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory Formation and Characterization of Advanced Polymers and Polymer Composites (ADPOLCOM), Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine;
- Correspondence: (V.D.); (M.K.)
| | - Yevgen Mamunya
- Department of Polymer Modification, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48. Kharkivske Shose, 02160 Kyiv, Ukraine; (Y.M.); (S.K.); (S.R.); (M.I.)
- Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory Formation and Characterization of Advanced Polymers and Polymer Composites (ADPOLCOM), Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine;
| | - Serhii Kobylinskyi
- Department of Polymer Modification, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48. Kharkivske Shose, 02160 Kyiv, Ukraine; (Y.M.); (S.K.); (S.R.); (M.I.)
| | - Sergii Riabov
- Department of Polymer Modification, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48. Kharkivske Shose, 02160 Kyiv, Ukraine; (Y.M.); (S.K.); (S.R.); (M.I.)
| | - Krystyna Naumenko
- Danylo Kyrylovych Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154. Academic Zabolotny Str., 03680 Kyiv, Ukraine; (K.N.); (S.Z.); (O.P.); (N.R.)
| | - Svitlana Zahorodnia
- Danylo Kyrylovych Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154. Academic Zabolotny Str., 03680 Kyiv, Ukraine; (K.N.); (S.Z.); (O.P.); (N.R.)
| | - Olga Povnitsa
- Danylo Kyrylovych Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154. Academic Zabolotny Str., 03680 Kyiv, Ukraine; (K.N.); (S.Z.); (O.P.); (N.R.)
| | - Nataliya Rybalchenko
- Danylo Kyrylovych Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154. Academic Zabolotny Str., 03680 Kyiv, Ukraine; (K.N.); (S.Z.); (O.P.); (N.R.)
| | - Maksym Iurzhenko
- Department of Polymer Modification, Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, 48. Kharkivske Shose, 02160 Kyiv, Ukraine; (Y.M.); (S.K.); (S.R.); (M.I.)
- Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine
- International Polish-Ukrainian Research Laboratory Formation and Characterization of Advanced Polymers and Polymer Composites (ADPOLCOM), Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine;
| | - Grazyna Adamus
- International Polish-Ukrainian Research Laboratory Formation and Characterization of Advanced Polymers and Polymer Composites (ADPOLCOM), Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine;
- Laboratory of Biodegradable Materials, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland
| | - Marek Kowalczuk
- International Polish-Ukrainian Research Laboratory Formation and Characterization of Advanced Polymers and Polymer Composites (ADPOLCOM), Department of Plastics Welding, Evgeny Oskarovich Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych Str., 03680 Kyiv, Ukraine;
- Laboratory of Biodegradable Materials, Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. C. Skłodowska St., 41-800 Zabrze, Poland
- Correspondence: (V.D.); (M.K.)
| |
Collapse
|
3
|
Demchenko V, Rybalchenko N, Zahorodnia S, Naumenko K, Riabov S, Kobylinskyi S, Vashchuk A, Mamunya Y, Iurzhenko M, Demchenko O, Adamus G, Kowalczuk M. Preparation, Characterization, and Antimicrobial and Antiviral Properties of Silver-Containing Nanocomposites Based on Polylactic Acid-Chitosan. ACS APPLIED BIO MATERIALS 2022; 5:2576-2585. [PMID: 35532757 DOI: 10.1021/acsabm.2c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antimicrobial and antiviral nanocomposites based on polylactic acid (PLA) and chitosan were synthesized by a thermochemical reduction method of Ag+ ions in the PLA-Ag+-chitosan polymer films. Features of the structural, morphological, thermophysical, antimicrobial, antiviral, and cytotoxic properties of PLA-Ag-chitosan nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and antiviral, antimicrobial, and cytotoxic studies. The effects of temperature and the duration of reduction of Ag+ ions on the structure of PLA-Ag-chitosan nanocomposites were established. During the thermochemical reduction (T = 160 °C, t = 5 min) of silver palmitate ions in PLA-Ag+-chitosan polymer films, Ag nanoparticles with an average size of 4.2 nm were formed. PLA-Ag-chitosan polymer nanocomposites have strong antimicrobial activity against S. aureus and E. coli strains. In particular, for PLA-chitosan samples containing 4% Ag, the diameters of the S. aureus and E. coli growth inhibition zones were 25.8 and 25.0 mm, respectively. The antiviral activity of the nanocomposites against influenza A virus, herpes simplex virus type 1, and adenovirus serotype 2 was also revealed. The PLA-4%Ag-chitosan nanocomposites completely inhibited the cytopathic effect (CPE) of herpes virus type 1 by 5.12 log10TCID50/mL (high antiviral activity) and the development of the CPE of influenza virus and adenovirus by 0.60 and 1.07 log10TCID50/mL (relative antiviral activity). The obtained nanocomposites were not cytotoxic; they did not inhibit the viability of MDCK, BHK-21, and Hep-2 cell cultures.
Collapse
Affiliation(s)
- Valeriy Demchenko
- Institute of Macromolecular Chemistry, The National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine.,E.O. Paton Electric Welding Institute, The National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine.,International Polish-Ukrainian Research Laboratory ADPOLCOM, Zabrze 41-819, Poland
| | - Nataliya Rybalchenko
- Zabolotny Institute of Microbiology and Virology, The National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Svetlana Zahorodnia
- Zabolotny Institute of Microbiology and Virology, The National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Krystyna Naumenko
- Zabolotny Institute of Microbiology and Virology, The National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Sergii Riabov
- Institute of Macromolecular Chemistry, The National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine
| | - Serhii Kobylinskyi
- Institute of Macromolecular Chemistry, The National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine
| | - Alina Vashchuk
- E.O. Paton Electric Welding Institute, The National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Yevgen Mamunya
- Institute of Macromolecular Chemistry, The National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine.,E.O. Paton Electric Welding Institute, The National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine.,International Polish-Ukrainian Research Laboratory ADPOLCOM, Zabrze 41-819, Poland
| | - Maksym Iurzhenko
- Institute of Macromolecular Chemistry, The National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine.,E.O. Paton Electric Welding Institute, The National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine.,International Polish-Ukrainian Research Laboratory ADPOLCOM, Zabrze 41-819, Poland
| | - Olena Demchenko
- National Research Center for Radiation Medicine, The National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine
| | - Grazyna Adamus
- International Polish-Ukrainian Research Laboratory ADPOLCOM, Zabrze 41-819, Poland.,Centre of Polymer and Carbon Materials, The Polish Academy of Sciences, Zabrze 41-819, Poland
| | - Marek Kowalczuk
- International Polish-Ukrainian Research Laboratory ADPOLCOM, Zabrze 41-819, Poland.,Centre of Polymer and Carbon Materials, The Polish Academy of Sciences, Zabrze 41-819, Poland
| |
Collapse
|
4
|
Ozerin AS, Mikhailyuk AE, Radchenko FS, Novakov IA. Preparation of Nanosized Particles of Cobalt in the Presence of Water-Soluble Polymers. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Prozorova GF, Pozdnyakov AS. Synthesis, Properties, and Biological Activity of Poly(1-vinyl-1,2,4-triazole) and Silver Nanocomposites Based on It. POLYMER SCIENCE SERIES C 2022. [PMCID: PMC8889524 DOI: 10.1134/s1811238222010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The review summarizes the data on the synthesis, physicochemical properties, and biological activity of poly(1-vinyl-1,2,4-triazole) and its nanocomposites with silver nanoparticles. The results of studying the antibacterial and antitumor activity of the polymers and nanocomposites and their immunomodulatory ability, toxicity, and interaction with body cells, as well as the prospects for their use in the development of medical materials, are presented.
Collapse
Affiliation(s)
- G. F. Prozorova
- Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - A. S. Pozdnyakov
- Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia
| |
Collapse
|
6
|
Zezin A, Danelyan G, Emel'yanov A, Zharikov A, Prozorova G, Zezina E, Korzhova S, Fadeeva T, Abramchuk S, Shmakova N, Pozdnyakov A. Synthesis of antibacterial polymer metal hybrids in irradiated poly‐1‐vinyl‐1,2,4‐triazole complexes with silver ions: pH tuning of nanoparticle sizes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Alexey Zezin
- Enikolopov Institute of Synthetic Polymeric Materials, a foundation of Russian Academy of Sciences Moscow Russia
- Department of Chemistry Lomonosov Moscow State University Moscow Russia
| | - Gurgen Danelyan
- Enikolopov Institute of Synthetic Polymeric Materials, a foundation of Russian Academy of Sciences Moscow Russia
| | - Artem Emel'yanov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences Irkutsk Russia
| | - Alexey Zharikov
- Department of Chemistry Lomonosov Moscow State University Moscow Russia
| | - Galina Prozorova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences Irkutsk Russia
| | - Elena Zezina
- Department of Chemistry Lomonosov Moscow State University Moscow Russia
| | - Svetlana Korzhova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences Irkutsk Russia
| | - Tat'yana Fadeeva
- Irkutsk Scientific Centre of Surgery and Traumatology Irkutsk Russia
| | - Sergei Abramchuk
- Department of Chemistry Lomonosov Moscow State University Moscow Russia
| | - Nina Shmakova
- Enikolopov Institute of Synthetic Polymeric Materials, a foundation of Russian Academy of Sciences Moscow Russia
| | - Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch Russian Academy of Sciences Irkutsk Russia
| |
Collapse
|
7
|
Burilova E, Solodov A, Shayimova J, Zhuravleva J, Shurtakova D, Evtjugin V, Zhiltsova E, Zakharova L, Kashapov R, Amirov R. Design of High-Relaxivity Polyelectrolyte Nanocapsules Based on Citrate Complexes of Gadolinium(III) of Unusual Composition. Int J Mol Sci 2021; 22:ijms222111590. [PMID: 34769024 PMCID: PMC8583736 DOI: 10.3390/ijms222111590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Through nuclear magnetic relaxation and pH-metry, the details of the complexation of gadolinium(III) ions with citric acid (H4L) in water and aqueous solutions of cationic polyelectrolytes are established. It is shown that the presence of poly(ethylene imine) (PEI) in solution affects magnetic relaxation behavior of gadolinium(III) complexes with citric acid (Cit) to a greater extent than polydiallyldimethylammonium chloride (PDDC). A large increase in relaxivity (up to 50 mM−1s−1) in the broad pH range (4–8) is revealed for the gadolinium(III)–citric acid–PEI system, which is particularly strong in the case of PEI with the molecular weight of 25 and 60 kDa. In weakly acidic medium (pH 3–7), the presence of PEI results in the formation of two tris-ligand associates [Gd(H2L)3]3− and [Gd(H2L)2(HL)]4−, which do not exist in aqueous medium. In weakly alkaline medium (pH 7–10), formation of ternary complexes Gd(III)–Cit–PEI with the Gd(III)–to–Cit ratio of 1:2 is evidenced. Using transmission electron microscopy (TEM) and dynamic light scattering techniques (DLS), the formation of the particles with the size of 50–100 nm possessing narrow molecular-mass distribution (PDI 0.08) is determined in the solution containing associate of PEI with tris-ligand complex [Gd(H2L)2(HL)]4−.
Collapse
Affiliation(s)
- Evgenia Burilova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (E.Z.); (L.Z.); (R.K.)
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia; (A.S.); (J.S.); (J.Z.); (D.S.); (V.E.); (R.A.)
- Correspondence: ; Tel.: +7-(843)233-71-45
| | - Alexander Solodov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia; (A.S.); (J.S.); (J.Z.); (D.S.); (V.E.); (R.A.)
| | - Julia Shayimova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia; (A.S.); (J.S.); (J.Z.); (D.S.); (V.E.); (R.A.)
| | - Julia Zhuravleva
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia; (A.S.); (J.S.); (J.Z.); (D.S.); (V.E.); (R.A.)
| | - Darya Shurtakova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia; (A.S.); (J.S.); (J.Z.); (D.S.); (V.E.); (R.A.)
| | - Vladimir Evtjugin
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia; (A.S.); (J.S.); (J.Z.); (D.S.); (V.E.); (R.A.)
| | - Elena Zhiltsova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (E.Z.); (L.Z.); (R.K.)
| | - Lucia Zakharova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (E.Z.); (L.Z.); (R.K.)
| | - Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (E.Z.); (L.Z.); (R.K.)
| | - Rustem Amirov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia; (A.S.); (J.S.); (J.Z.); (D.S.); (V.E.); (R.A.)
| |
Collapse
|
8
|
Misin VM, Zezin AA, Klimov DI, Sybachin AV, Yaroslavov AA. Biocidal Polymer Formulations and Coatings. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Gorbunova MN, Voronina AO, Strelnikov VN. Cytotoxic activity of silver nanocomposites based on N, N-diallyl-N′-acylhydrazines copolymers. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Formation of metal nanostructures under X-ray radiation in films of interpolyelectrolyte complexes with different silver ion content. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2956-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Pozdnyakov AS, Ivanova AA, Emel’yanov AI, Prozorova GF. Metal-polymer Ag nanocomposites based on hydrophilic nitrogen- and sulfur-containing copolymers: control of nanoparticle size. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2823-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Zezin AA. Synthesis of Metal-Polymer Complexes and Functional Nanostructures in Films and Coatings of Interpolyelectrolyte Complexes. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x19060154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Zezina EA, Emel’yanov AI, Pozdnyakov AS, Prozorova GF, Abramchuk SS, Feldman VI, Zezin AA. Radiation-induced synthesis of copper nanostructures in the films of interpolymer complexes. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Zezin AA, Emel’yanov AI, Prozorova GF, Zezina EA, Feldman VI, Abramchuk SS, Pozdnyakov AS. A one-pot radiation-chemical synthesis of metal-polymeric nanohybrides in solutions of vinyltriazole containing gold ions. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Peculiarities of structural organization and antimicrobial activity of copper-containing nanocomposites. Polym J 2018. [DOI: 10.15407/polymerj.40.04.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Pozdnyakov AS, Ivanova AA, Emel’yanov AI, Khutsishvili SS, Vakul’skaya TI, Ermakova TG, Prozorova GF. Fe-containing nanocomposites based on a biocompatible copolymer 1-vinyl-1,2,4-triazole with N-vinylpyrrolidone. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-2020-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Pozdnyakov AS, Ivanova AA, Emelyanov AI, Ermakova TG, Prozorova GF. Nanocomposites with silver nanoparticles based on copolymer of 1-vinyl-1,2,4-triazole with N-vinylpyrrolidone. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1860-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
The structure and thermomechanical properties of polyelectrolyte complexes based on carboxymethylcellulose and polyethyleneimine. Polym J 2017. [DOI: 10.15407/polymerj.39.01.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|