1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Wang X, Zhao W, Nomura K. Synthesis of High-Molecular-Weight Biobased Aliphatic Polyesters by Acyclic Diene Metathesis Polymerization in Ionic Liquids. ACS OMEGA 2023; 8:7222-7233. [PMID: 36844507 PMCID: PMC9948555 DOI: 10.1021/acsomega.3c00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Acyclic diene metathesis (ADMET) polymerization of an α,ω-diene monomer of bis(undec-10-enoate) with isosorbide (M1) using a RuCl2(IMesH2)(CH-2-O i Pr-C6H4) (HG2, IMesH2 = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) catalyst and conducted at 50 °C (in vacuo) in ionic liquids (ILs) afforded higher-molecular-weight polymers (P1, M n = 32 200-39 200) than those reported previously (M n = 5600-14700). 1-n-Butyl-3-methyl imidazolium hexafluorophosphate ([Bmim]PF6) and 1-n-hexyl-3-methyl imidazolium bis(trifluoromethanesulfonyl)imide ([Hmim]TFSI) were suitable as effective solvents among a series of imidazolium salts and the pyridinium salts. The polymerization of α,ω-diene monomers of bis(undec-10-enoate) with isomannide (M2), 1,4-cyclohexanedimethanol (M3), and 1,4-butanediol (M4) in [Bmim]PF6 and [Hmim]TFSI also afforded the higher-molecular-weight polymers. The M n values in the resultant polymers did not decrease even under the scale-up conditions (300 mg to 1.0 g scale, M1, M2, and M4) in the polymerizations in [Hmim]TFSI; the subsequent reaction of P1 with ethylene (0.8 MPa, 50 °C, and 5 h) gave oligomers (proceeded via depolymerization). Tandem hydrogenation of the resultant unsaturated polymers (P1) in a [Bmim]PF6-toluene biphasic system upon the addition of Al2O3 (1.0 MPa H2 at 50 °C) gave the corresponding saturated polymers (HP1), which waswere isolated by a phase separation in the toluene layer. The [Bmim]PF6 layer containing the ruthenium catalyst could be recycled without a decrease in the activity/selectivity of the olefin hydrogenation at least eight times.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Weizhen Zhao
- Beijing
Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, 1 North Second Street, Zhongguancun,
Haidian District, Beijing 100190, China
| | - Kotohiro Nomura
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
3
|
Nazarov IV, Zarezin DP, Solomatov IA, Danshina AA, Nelyubina YV, Ilyasov IR, Bermeshev MV. Chiral Polymers from Norbornenes Based on Renewable Chemical Feedstocks. Polymers (Basel) 2022; 14:polym14245453. [PMID: 36559820 PMCID: PMC9786787 DOI: 10.3390/polym14245453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Optically active polymers are of great interest as materials for dense enantioselective membranes, as well as chiral stationary phases for gas and liquid chromatography. Combining the versatility of norbornene chemistry and the advantages of chiral natural terpenes in one molecule will open up a facile route toward the synthesis of diverse optically active polymers. Herein, we prepared a set of new chiral monomers from cis-5-norbornene-2,3-dicarboxylic anhydride and chiral alcohols of various natures. Alcohols based on cyclic terpenes ((-)-menthol, (-)-borneol and pinanol), as well as commercially available alcohols (S-(-)-2-methylbutanol-1, S-(+)-3-octanol), were used. All the synthesized monomers were successfully involved in ring-opening metathesis polymerization, affording polymers in high yields (up to 96%) and with molecular weights in the range of 1.9 × 105-5.8 × 105 (Mw). The properties of the metathesis polymers obtained were studied by TGA and DSC analysis, WAXD, and circular dichroism spectroscopy. The polymers exhibited high thermal stability and good film-forming properties. Glass transition temperatures for the prepared polymers varied from -30 °C to +139 °C and, therefore, the state of the polymers changed from rubbery to glassy. The prepared polymers represent a new attractive platform of chiral polymeric materials for enantioselective membrane separation and chiral stationary phases for chromatography.
Collapse
Affiliation(s)
- Ivan V. Nazarov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
| | - Danil P. Zarezin
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
| | - Ivan A. Solomatov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
| | - Anastasya A. Danshina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy Per., 9, 141700 Dolgoprudny, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia
| | - Igor R. Ilyasov
- Nelubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia
| | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy Pr., 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-647-59-27 (ext. 379)
| |
Collapse
|
4
|
Synthesis, Characterization, Biological Evaluation, and In Silico Studies of Imidazolium-, Pyridinium-, and Ammonium-Based Ionic Liquids Containing n-Butyl Side Chains. Molecules 2022; 27:molecules27196650. [PMID: 36235187 PMCID: PMC9572234 DOI: 10.3390/molecules27196650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ionic liquids (ILs) have emerged as active pharmaceutical ingredients because of their excellent antibacterial and biological activities. Herein, we used the green-chemistry-synthesis procedure, also known as the metathesis method, to develop three series of ionic liquids using 1-methyl-3-butyl imidazolium, butyl pyridinium, and diethyldibutylammonium as cations, and bromide (Br−), methanesulfonate (CH3SO3−), bis(trifluoromethanesulfonyl)imide (NTf2−), dichloroacetate (CHCl2CO2−), tetrafluoroborate (BF4−), and hydrogen sulfate (HSO4−) as anions. Spectroscopic methods were used to validate the structures of the lab-synthesized ILs. We performed an agar well diffusion assay by using pathogenic bacteria that cause various infections (Escherichia coli; Enterobacter aerogenes; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Streptococcus pneumoniae; Streptococcus pyogenes) to scrutinize the in vitro antibacterial activity of the ILs. It was established that the nature and unique combination of the cations and anions were responsible for the antibacterial activity of the ILs. Among the tested ionic liquids, the imidazolium cation and NTf2− and HSO4− anions exhibited the highest antibacterial activity. The antibacterial potential was further investigated by in silico studies, and it was observed that bis(trifluoromethanesulfonyl)imide (NTf2−) containing imidazolium and pyridinium ionic liquids showed the maximum inhibition against the targeted bacterial strains and could be utilized in antibiotics. These antibacterial activities float the ILs as a promising alternative to the existing antibiotics and antiseptics.
Collapse
|
5
|
Guseva MA, Alentiev DA, Bakhtin DS, Borisov IL, Borisov RS, Volkov AV, Finkelshtein ES, Bermeshev MV. Polymers based on exo-silicon-substituted norbornenes for membrane gas separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|