1
|
Mansouri V, Bandarian F, Razi F, Razzaghi Z, Rezaei-Tavirani M, Rezaei M, Arjmand B, Rezaei-Tavirani M. NF-kappa B signaling pathway is associated with metformin resistance in type 2 diabetes patients. J Diabetes Metab Disord 2024; 23:2021-2030. [PMID: 39610517 PMCID: PMC11599502 DOI: 10.1007/s40200-024-01458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 11/30/2024]
Abstract
Introduction Metformin is an essential medicine that is most widely prescribed frontline for the treatment of Type 2 diabetes (T2D). Metformin upgraded glycemic control in T2D patients without hypoglycemic effects in patients. This assessment aims to understand molecular mechanism mechanisms in non-responder patients to metformin. Methods Gene expression profiles of responder and non-responder T2D patients to metformin are extracted from Gene Expression Omnibus (GEO) and are evaluated by the GEO2R program to find the significant differentially expressed genes (DEGs). The significant DEGs have been studied via action map gene ontology analyses. Results Results indicate that 563 significant DEGs discriminate non-responders from responder groups. "NF-kappa B signaling pathway" and 11 DEGs including BIRC3, CCL4L2, CXCL2, ICAM1, LYN, MYD88, RELA, SYK, TLR4, TNFAIP3, and TRIM25 were pointed out as core of drug resistance. Conclusion It can be concluded that there are differences between gene expression analysis, the response of diabetic patients to metformin. Results indicate that dysregulation of the "NF-kappa B signaling pathway" and TNFAIP3, BIRC3, RELA, MYD88, TLR4, and ICAM1 is associated with drug resistance in T2D patients.
Collapse
Affiliation(s)
- Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser application in medical sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mitra Rezaei
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Abd-Elhamid TH, Althumairy D, Bani Ismail M, Abu Zahra H, Seleem HS, Hassanein EHM, Ali FEM, Mahmoud AR. Neuroprotective effect of diosmin against chlorpyrifos-induced brain intoxication was mediated by regulating PPAR-γ and NF-κB/AP-1 signals. Food Chem Toxicol 2024; 193:114967. [PMID: 39197517 DOI: 10.1016/j.fct.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate (OP) pesticide. Unfortunately, pesticides are known to cause neuronal intoxication. Diosmin (DS) is an antioxidant, anti-inflammatory, and neuroprotective flavonoid with high efficacy and safety. We plan to investigate the efficacy of DS in treating CPF-induced neurotoxicity, as well as the mechanisms underlying the protective effects. In our study, rats were randomized into 5 groups: control, DS (50 mg/kg), CPF (10 mg/kg), CPF + DS (25 mg/kg), and CPF + DS (50 mg/kg). The results indicated that DS ameliorated neuronal intoxication induced by CPF, evidenced by decreasing Tau, p-Tau, and β-amyloid. Histological examinations support these findings. DS significantly ameliorated CPF-induced neuronal oxidative injury by decreasing MDA content and elevating GSH, GST, and SOD levels mediated by PPAR-γ upregulation. DS suppressed CPF-induced brain inflammation by decreasing MPO enzymatic activity and TNF-α, IL-1β, and IL-6 levels mediated by downregulation of NF-κB/AP-1(c-FOS and c-JUN) signal. Of note, DS protective effects were dose dependent. In conclusion, our data suggested that DS was a promising therapeutic strategy for attenuating CPF-induced neuronal intoxication by restoring oxidant-antioxidant balance and inhibiting inflammatory response in brain tissues.
Collapse
Affiliation(s)
- Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Duaa Althumairy
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohammad Bani Ismail
- Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Hamad Abu Zahra
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Hanan S Seleem
- Histology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 77110, Jordan.
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt; Department of Anatomy and Histology, College of Medicine, Qassim University, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Bhardwaj S, Grewal AK, Singh S, Dhankar V, Jindal A. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB. Inflammopharmacology 2024; 32:2943-2960. [PMID: 38951436 DOI: 10.1007/s10787-024-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-β (Aβ) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.
Collapse
Affiliation(s)
- Shaveta Bhardwaj
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Anu Jindal
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| |
Collapse
|
4
|
Bou Sader Nehme S, Sanchez-Sarasua S, Adel R, Tuifua M, Ali A, Essawy AE, Abdel Salam S, Hleihel W, Boué-Grabot E, Landry M. P2X4 signalling contributes to hyperactivity but not pain sensitization comorbidity in a mouse model of attention deficit/hyperactivity disorder. Front Pharmacol 2024; 14:1288994. [PMID: 38239187 PMCID: PMC10794506 DOI: 10.3389/fphar.2023.1288994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by hyperactivity, inattention, and impulsivity that often persist until adulthood. Frequent comorbid disorders accompany ADHD and two thirds of children diagnosed with ADHD also suffer from behavioural disorders and from alteration of sensory processing. We recently characterized the comorbidity between ADHD-like symptoms and pain sensitisation in a pharmacological mouse model of ADHD, and we demonstrated the implication of the anterior cingulate cortex and posterior insula. However, few studies have explored the causal mechanisms underlying the interactions between ADHD and pain. The implication of inflammatory mechanisms has been suggested but the signalling pathways involved have not been explored. Methods: We investigated the roles of purinergic signalling, at the crossroad of pain and neuroinflammatory pathways, by using a transgenic mouse line that carries a total deletion of the P2X4 receptor. Results: We demonstrated that P2X4 deletion prevents hyperactivity in the mouse model of ADHD. In contrast, the absence of P2X4 lowered thermal pain thresholds in sham conditions and did not affect pain sensitization in ADHD-like conditions. We further analysed microglia reactivity and the expression of inflammatory markers in wild type and P2X4KO mice. Our results revealed that P2X4 deletion limits microglia reactivity but at the same time exerts proinflammatory effects in the anterior cingulate cortex and posterior insula. Conclusion: This dual role of P2X4 could be responsible for the differential effects noted on ADHD-like symptoms and pain sensitization and calls for further studies to investigate the therapeutic benefit of targeting the P2X4 receptor in ADHD patients.
Collapse
Affiliation(s)
- Sarah Bou Sader Nehme
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, IMN, UMR 5293, Bordeaux, France
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Sandra Sanchez-Sarasua
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, IMN, UMR 5293, Bordeaux, France
- Faculty of Health Sciences, University of Jaume I, Castellon, Spain
| | - Ramy Adel
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marie Tuifua
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, IMN, UMR 5293, Bordeaux, France
| | - Awatef Ali
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amina E. Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sherine Abdel Salam
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Eric Boué-Grabot
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, IMN, UMR 5293, Bordeaux, France
| | - Marc Landry
- University of Bordeaux, CNRS, Institute of Neurodegenerative Diseases, IMN, UMR 5293, Bordeaux, France
| |
Collapse
|
5
|
Vasilyeva EF, Savushkina OK, Prokhorova TA, Tereshkina EB, Boksha IS, Sizov SV, Oleichik IV. [Proinflammatory activity of monocytes and activity of glutathione-dependent enzymes in red blood cells in women with depressive conditions]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:120-125. [PMID: 39072577 DOI: 10.17116/jnevro2024124061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To search for possible connections between the anti-inflammatory activity of monocytes (PAM) and the activity of glutathione metabolic enzymes: glutathione reductase (GR) and glutathione-S-transferase (GT) in patients with depressive states (DS) within various mental pathologies, as well as between the studied biological parameters and clinical condition of patients. MATERIAL AND METHODS Sixty-one women, aged 18-56 years, with DC were examined before and after treatment. Symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS) and the Hamilton Depressive Symptom Rating Scale (HDRS-21). The control group included 23 women of the corresponding age without mental pathology. Biological parameters were assessed in the peripheral blood of patients and healthy people. RESULTS Patients with a high level of PAM compared to the control (p<0.001) (subgroup 1, n=31) and with a low (at the control level) level (subgroup 2, n=30) were identified. In the subgroup 1, the values of GR and GT were significantly lower than in patients of subgroup 2 (p<0.05 and p<0.01, respectively). Negative correlations between the level of PAM before treatment and GR before and after treatment were revealed in patients who responded to treatment (r=-0.67; p=0.0041; r=-0.76; p=0.0001). CONCLUSION The results may indicate the inverse relationship between the level of PAM and the activity of GR and GT, which are involved in the pathogenesis of DC, and can also serve as criteria for assessing the response of patients to treatment.
Collapse
Affiliation(s)
| | | | | | | | - I S Boksha
- Mental Health Research Center, Moscow, Russia
| | - S V Sizov
- Mental Health Research Center, Moscow, Russia
| | | |
Collapse
|
6
|
Basavarajappa D, Gupta V, Chitranshi N, Viswanathan D, Gupta V, Vander Wall R, Palanivel V, Mirzaei M, You Y, Klistorner A, Graham SL. Anti-inflammatory Effects of Siponimod in a Mouse Model of Excitotoxicity-Induced Retinal Injury. Mol Neurobiol 2023; 60:7222-7237. [PMID: 37542647 PMCID: PMC10657799 DOI: 10.1007/s12035-023-03535-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
Glaucoma is a leading cause of permanent blindness worldwide and is characterized by neurodegeneration linked to progressive retinal ganglion cell (RGC) death, axonal damage, and neuroinflammation. Glutamate excitotoxicity mediated through N-methyl-D-aspartate (NMDA) receptors plays a crucial role in glaucomatous RGC loss. Sphingosine 1-phosphate receptors (S1PRs) are important mediators of neurodegeneration and neuroinflammation in the brain and the retina. Siponimod is an immunomodulatory drug for multiple sclerosis and is a selective modulator of S1PR subtypes 1 and 5 and has been shown to have beneficial effects on the central nervous system (CNS) in degenerative conditions. Our previous study showed that mice administered orally with siponimod protected inner retinal structure and function against acute NMDA excitotoxicity. To elucidate the molecular mechanisms behind these protective effects, we investigated the inflammatory pathways affected by siponimod treatment in NMDA excitotoxicity model. NMDA excitotoxicity resulted in the activation of glial cells coupled with upregulation of the inflammatory NF-kB pathway and increased expression of TNFα, IL1-β, and IL-6. Siponimod treatment significantly reduced glial activation and suppressed the pro-inflammatory pathways. Furthermore, NMDA-induced activation of NLRP3 inflammasome and upregulation of neurotoxic inducible nitric oxide synthase (iNOS) were significantly diminished with siponimod treatment. Our data demonstrated that siponimod induces anti-inflammatory effects via suppression of glial activation and inflammatory singling pathways that could protect the retina against acute excitotoxicity conditions. These findings provide insights into the anti-inflammatory effects of siponimod in the CNS and suggest a potential therapeutic strategy for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Deepa Viswanathan
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Roshana Vander Wall
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Alexander Klistorner
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
7
|
Kansal H, Chopra V, Garg K, Sharma S. Role of thioredoxin in chronic obstructive pulmonary disease (COPD): a promising future target. Respir Res 2023; 24:295. [PMID: 38001457 PMCID: PMC10668376 DOI: 10.1186/s12931-023-02574-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Thioredoxin (Trx) is a secretory protein that acts as an antioxidant, redox regulator, anti-allergic, and anti-inflammatory molecule. It has been used to treat dermatitis and inflammation of the digestive tract. In the lungs, Trx has a significant anti-inflammatory impact. On the other hand, Chronic Obstructive Pulmonary Disease (COPD) is one of the significant causes of death in the developed world, with a tremendous individual and socioeconomic impact. Despite new initiatives and endless treatment trials, COPD incidence and death will likely escalate in the coming decades. AREAS COVERED COPD is a chronic inflammatory disease impacting the airways, lung parenchyma, and pulmonary vasculature. Oxidative stress and protease-antiprotease imbalances are thought to be involved in the process. The most popular respiratory inflammatory and allergic disorders therapies are corticosteroids and β-receptor agonists. These medications are helpful but have some drawbacks, such as infection and immunosuppression; thus, addressing Trx signalling treatments may be a viable COPD treatment approach. This review shall cover the pathophysiology of COPD, the pharmacognosy of anti-COPD drugs, including the assets and liabilities of each, and the role and mechanism of Trx in COPD treatment. EXPERT OPINION Limited research has targeted the thioredoxin system as an anti-COPD drug. Spectating the increase in the mortality rates of COPD, this review article would be an interesting one to research.
Collapse
Affiliation(s)
- Heena Kansal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Vishal Chopra
- Department of Pulmonary Medicine, Government Medical College, Patiala, India
| | - Kranti Garg
- Department of Pulmonary Medicine, Government Medical College, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India.
| |
Collapse
|
8
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
9
|
Miao BB, Gao D, Hao JP, Li YL, Li L, Wang JB, Xiao XH, Yang CC, Zhang L. Tetrahydroxy stilbene glucoside alters neurogenesis and neuroinflammation to ameliorate radiation-associated cognitive disability via AMPK/Tet2. Int Immunopharmacol 2022; 110:108928. [DOI: 10.1016/j.intimp.2022.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022]
|
10
|
Salama A, Elgohary R, M Amin M, Elwahab SA. Immunomodulatory effect of protocatechuic acid on cyclophosphamide induced brain injury in rat: Modulation of inflammosomes NLRP3 and SIRT1. Eur J Pharmacol 2022; 932:175217. [PMID: 36007603 DOI: 10.1016/j.ejphar.2022.175217] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
Modulation of the inflammasome NLRP3 and SIRT1 are new combat strategy for brain injury protection. The inflammasome activates proinflammatory cytokines releasing interleukin-1β and interleukin-18 which in turn affect the toxins release from immune cells. In addition, SIRT1 controls many biological functions, such as immune response and oxidative stress. Protocatechuic has versatile biological activities and possesses antioxidant, anti-inflammatory and neuroprotective effects. So this work aims to study immunomodulatory effect of protocatechuic acid on cyclophosphamide chemotherapy drug-induced brain injury via modulation of inflammosomes NLRP3 and SIRT1. Rats were randomly assigned to four experimental groups. Normal control group was injected with a single i.p injection of saline. Cyclophosphamide group was injected with a single i.p injection of cyclophosphamide (200 mg/kg). Protocatechuic acid groups were orally administered (50 &100 mg/kg) once daily for 10 consecutive days after cyclophosphamide injection. Protocatechuic acid administration exhibited improvements of the cognition function and memory, a reduction in brain contents of MDA, NLRP3, IL-1 β, NF-κB, IKBKB and Galectin 3 and an elevation of GSH and SIRT1 compared to cyclophosphamide group. In addition, protocatechuic acid administration ameliorated the elevation of caspase 3 and iNOS gene expression and alleviated the neuron degeneration caused by cyclophosphamide. In conclusion, the therapeutic action of protocatechuic acid and its cellular and molecular mechanisms are new insights against various human ailments, especially, neuroprotective disease as brain injury induced by cyclophosphamide chemotherapy drug in rats through modulation of inflammosomes NLRP3 and SIRT1.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt.
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Sahar Abd Elwahab
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|