1
|
Bhaskar R, Pandey SP, Kumar U, Kim H, Jayakodi SK, Gupta MK, Han SS. Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests. OPENNANO 2024; 15:100198. [DOI: 10.1016/j.onano.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
2
|
Voloshin R, Shumilova S, Zadneprovskaya E, Zharmukhamedov S, Alwasel S, Hou H, Allakhverdiev S. Photosystem II in bio-photovoltaic devices. PHOTOSYNTHETICA 2022; 60:121-135. [PMID: 39649000 PMCID: PMC11559483 DOI: 10.32615/ps.2022.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 02/18/2022] [Indexed: 12/10/2024]
Abstract
Hybrid photoelectrodes containing biological pigment-protein complexes can be used for environmentally friendly solar energy conversion, herbicide detection, and other applications. The total number of scientific publications on hybrid bio-based devices has grown rapidly over the past decades. Particular attention is paid to the integration of the complexes of PSII into photoelectrochemical devices. A notable feature of these complexes from a practical point of view is their ability to obtain electrons from abundant water. The utilization or imitation of the PSII functionality seems promising for all of the following: generating photoelectricity, photo-producing hydrogen, and detecting herbicides. This review summarizes recent advances in the development of hybrid devices based on PSII. In a brief historical review, we also highlighted the use of quinone-type bacterial reaction centers in hybrid devices. These proteins are the first from which the photoelectricity signal was detected. The photocurrent in these first systems, developed in the 70s-80s, was about 1 nA cm-2. In the latest work, by Güzel et al. (2020), a stable current of about 888 μA cm-2 as achieved in a PSII-based solar cell. The present review is inspired by this impressive progress. The advantages, disadvantages, and future endeavors of PSII-inspired bio-photovoltaic devices are also presented.
Collapse
Affiliation(s)
- R.A. Voloshin
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - S.M. Shumilova
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - E.V. Zadneprovskaya
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - S.K. Zharmukhamedov
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
| | - S. Alwasel
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - H.J.M. Hou
- Laboratory of Forensic Analysis and Photosynthesis, Department of Physical/Forensic Sciences, Alabama State University, Montgomery, 36104 Alabama, United States
| | - S.I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow Region, Russia
- College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Amoruso G, Liu J, Polak DW, Tiwari K, Jones MR, Oliver TAA. High-Efficiency Excitation Energy Transfer in Biohybrid Quantum Dot-Bacterial Reaction Center Nanoconjugates. J Phys Chem Lett 2021; 12:5448-5455. [PMID: 34081477 DOI: 10.1021/acs.jpclett.1c01407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reaction centers (RCs) are the pivotal component of natural photosystems, converting solar energy into the potential difference between separated electrons and holes that is used to power much of biology. RCs from anoxygenic purple photosynthetic bacteria such as Rhodobacter sphaeroides only weakly absorb much of the visible region of the solar spectrum, which limits their overall light-harvesting capacity. For in vitro applications such as biohybrid photodevices, this deficiency can be addressed by effectively coupling RCs with synthetic light-harvesting materials. Here, we studied the time scale and efficiency of Förster resonance energy transfer (FRET) in a nanoconjugate assembled from a synthetic quantum dot (QD) antenna and a tailored RC engineered to be fluorescent. Time-correlated single-photon counting spectroscopy of biohybrid conjugates enabled the direct determination of FRET from QDs to attached RCs on a time scale of 26.6 ± 0.1 ns and with a high efficiency of 0.75 ± 0.01.
Collapse
Affiliation(s)
- Giordano Amoruso
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Juntai Liu
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Daniel W Polak
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Kavita Tiwari
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Thomas A A Oliver
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
4
|
Liu J, Mantell J, Di Bartolo N, Jones MR. Mechanisms of Self-Assembly and Energy Harvesting in Tuneable Conjugates of Quantum Dots and Engineered Photovoltaic Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804267. [PMID: 30569587 DOI: 10.1002/smll.201804267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Photoreaction centers facilitate the solar energy transduction at the heart of photosynthesis and there is increasing interest in their incorporation into biohybrid devices for solar energy conversion, sensing, and other applications. In this work, the self-assembly of conjugates between engineered bacterial reaction centers (RCs) and quantum dots (QDs) that act as a synthetic light harvesting system is described. The interface between protein and QD is provided by a polyhistidine tag that confers a tight and specific binding and defines the geometry of the interaction. Protein engineering that changes the pigment composition of the RC is used to identify Förster resonance energy transfer as the mechanism through which QDs can drive RC photochemistry with a high energy transfer efficiency. A thermodynamic explanation of RC/QD conjugation based on a multiple/independent binding model is provided. It is also demonstrated that the presence of multiple binding sites affects energy coupling not only between RCs and QDs but also among the bound RCs themselves, effects which likely stem from restricted RC dynamics at the QD surface in denser conjugates. These findings are readily transferrable to many other conjugate systems between proteins or combinations of proteins and other nanomaterials.
Collapse
Affiliation(s)
- Juntai Liu
- School of Biochemistry Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Judith Mantell
- Wolfson Bioimaging Facility, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Natalie Di Bartolo
- School of Biochemistry Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Michael R Jones
- School of Biochemistry Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
5
|
Biohybrid solar cells: Fundamentals, progress, and challenges. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Mieritz D, Li X, Volosin A, Liu M, Yan H, Walter NG, Seo DK. Tracking Single DNA Nanodevices in Hierarchically Meso-Macroporous Antimony-Doped Tin Oxide Demonstrates Finite Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6410-6418. [PMID: 28574712 DOI: 10.1021/acs.langmuir.7b00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Housing bio-nano guest devices based on DNA nanostructures within porous, conducting, inorganic host materials promise valuable applications in solar energy conversion, chemical catalysis, and analyte sensing. Herein, we report a single-template synthetic development of hierarchically porous, transparent conductive metal oxide coatings whose pores are freely accessible by large biomacromolecules. Their hierarchal pore structure is bimodal with a larger number of closely packed open macropores (∼200 nm) at the higher rank and with the remaining space being filled with a gel network of antimony-doped tin oxide (ATO) nanoparticles that is highly porous with a broad size range of textual pores mainly from 20-100 nm at the lower rank. The employed carbon black template not only creates the large open macropores but also retains the highly structured gel network as holey pore walls. Single molecule fluorescence microscopic studies with fluorophore-labeled DNA nanotweezers reveal a detailed view of multimodal diffusion dynamics of the biomacromolecules inside the hierarchically porous structure. Two diffusion constants were parsed from trajectory analyses that were attributed to free diffusion (diffusion constant D = 2.2 μm2/s) and to diffusion within an average confinement length of 210 nm (D = 0.12 μm2/s), consistent with the average macropore size of the coating. Despite its holey nature, the ATO gel network acts as an efficient barrier to the diffusion of the DNA nanostructures, which is strongly indicative of physical interactions between the molecules and the pore nanostructure.
Collapse
Affiliation(s)
| | - Xiang Li
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | - Nils G Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | |
Collapse
|