1
|
Karpova SG, Olkhov AA, Varyan IA, Shilkina NG, Berlin AA, Popov AA, Iordanskii AL. Biocomposites Based on Electrospun Fibers of Poly(3-hydroxybutyrate) and Nanoplatelets of Graphene Oxide: Thermal Characteristics and Segmental Dynamics at Hydrothermal and Ozonation Impact. Polymers (Basel) 2023; 15:4171. [PMID: 37896415 PMCID: PMC10610569 DOI: 10.3390/polym15204171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
In order to create new biodegradable nanocomposites for biomedicine, packaging, and environmentally effective adsorbents, ultra-thin composite fibers consisting of poly(3-hydroxybutyrate) (PHB) and graphene oxide (GO) were obtained by electrospinning. Comprehensive studies of ultrathin fibers combining thermal characteristics, dynamic electron paramagnetic resonance (ESR) probe measurements, and scanning electron microscopy (SEM) were carried out. It is shown that at the addition of 0.05, 0.1, 0.3, and 1% OG, the morphology and geometry of the fibers and their thermal and dynamic characteristics depend on the composite content. The features of the crystalline and amorphous structure of the PHB fibers were investigated by the ESR and DSC methods. For all compositions of PHB/GO, a nonlinear dependence of the correlation time of molecular mobility TEMPO probe (τ) and enthalpy of biopolyether melting (ΔH) is observed. The influence of external factors on the structural-dynamic properties of the composite fiber, such as hydrothermal exposure of samples in aqueous medium at 70 °C and ozonolysis, leads to extreme dependencies of τ and ΔH, which reflect two processes affecting the structure in opposite ways. The plasticizing effect of water leads to thermal destruction of the orientation of the pass-through chains in the amorphous regions of PHB and a subsequent decrease in the crystalline phase, and the aggregation of GO nanoplates into associates, reducing the number of GO-macromolecule contacts, thus increasing segmental mobility, as confirmed by decreasing τ values. The obtained PHB/GO fibrillar composites should find application in the future for the creation of new therapeutic and packaging systems with improved biocompatibility and high-barrier properties.
Collapse
Affiliation(s)
- Svetlana G. Karpova
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
| | - Anatoly A. Olkhov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Ivetta A. Varyan
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Natalia G. Shilkina
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (N.G.S.); (A.A.B.)
| | - Alexander A. Berlin
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (N.G.S.); (A.A.B.)
| | - Anatoly A. Popov
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia; (S.G.K.); (A.A.O.); (A.A.P.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 117997 Moscow, Russia
| | - Alexey L. Iordanskii
- N. N. Semenov Federal Research Center for Chemical Physics Academy of Science, 119991 Moscow, Russia; (N.G.S.); (A.A.B.)
| |
Collapse
|
2
|
Bychkova AV, Lopukhova MV, Wasserman LA, Degtyarev YN, Kovarski AL, Chakraborti S, Mitkevich VA. The influence of pH and ionic strength on the interactions between human serum albumin and magnetic iron oxide nanoparticles. Int J Biol Macromol 2022; 194:654-665. [PMID: 34813783 DOI: 10.1016/j.ijbiomac.2021.11.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
Human serum albumin (HSA) is a very well-characterized protein, which has already been used for many biocompatible coatings. We hypothesized binding between HSA and magnetic iron oxide nanoparticles (MNPs) as well as HSA coating stability to be pH- and ionic strength-dependent. The impact of phosphate buffer on protein coating was studied at varying pH (6.0, 6.6, and 7.5) and ionic strengths (0.15 and 0.30 M NaCl) using different physicochemical methods. In addition, the stability of HSA coatings on MNPs was studied by means of UV/visible spectrophotometry, dynamic light scattering, and electron magnetic resonance. We used differential scanning calorimetry (DSC) to determine the differences in the change of enthalpies and denaturation temperatures of HSA in various buffer conditions and on the surface of the particles. The binding thermodynamics of HSA and MNPs were determined by isothermal titration calorimetry (ITC), and it was also dependent on pH and ionic strength. The stability of adsorbed layer on MNPs decreases with increasing pH [from weakly acidic (pH 6.0-6.6) to slightly alkaline (pH 7.5)], as well as with an increase of ionic strength. This study develops stable HSA coating on MNPs which might be applied to a wide range of biomedical applications.
Collapse
Affiliation(s)
- Anna V Bychkova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia.
| | - Mariia V Lopukhova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia
| | - Luybov A Wasserman
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia
| | - Yevgeniy N Degtyarev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia; N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina str., 4, 119991 Moscow, Russia
| | - Alexander L Kovarski
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, 119334 Moscow, Russia
| | | | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str., 32, 119991 Moscow, Russia
| |
Collapse
|
3
|
Karpova SG, Ol’khov AA, Zhul’kina AL, Popov AA, Iordanskii AL. Nonwoven Materials Based on Electrospun Ultrathin Fibers of Poly(3-hydroxybutyrate) and Complex Tin Chloride–Porphyrin. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21040040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Ol’khov AA, Lobanov AV, Karpova SG, Bychkova AV, Artyukh AA, Goloshchapov AN, Iordanskii AL. Effect of the Addition of Iron(III) Tetraphenylporphyrin Complex on the Structure of Poly(3-hydroxybutyrate) Fibers Prepared by Electrospinning. RUSS J APPL CHEM+ 2019. [DOI: 10.1134/s1070427219040062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Liu Y, Cao K, Karpova S, Olkhov A, Filatova A, Zhulkina A, Burkov A, Fomin SV, Rosa DS, Iordanskii AL. Comparative Characterization of Melt Electrospun Fibers and Films Based on PLA-PHB Blends: Diffusion, Drug Release, and Structural Features. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/masy.201800130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites; Beijing University of Chemical Technology; Beijing 100029 China
| | - Kuan Cao
- Beijing Key Laboratory of Advanced Functional Polymer Composites; Beijing University of Chemical Technology; Beijing 100029 China
| | - Svetlana Karpova
- Emanuel Institute of Biochemical Physics; Kosygin Str. 4 Moscow 119991 RF
| | - Anatoliy Olkhov
- Semenov Institute of Chemical Physics; Kosygin Str. 4 Moscow 119991 RF
| | - Anna Filatova
- Semenov Institute of Chemical Physics; Kosygin Str. 4 Moscow 119991 RF
| | - Anna Zhulkina
- Semenov Institute of Chemical Physics; Kosygin Str. 4 Moscow 119991 RF
| | - Andrey Burkov
- Vyatskiy State University; Moskovskaya ul. 36 Kirov (obl.) 610000 RF
| | - Sergey V. Fomin
- Vyatskiy State University; Moskovskaya ul. 36 Kirov (obl.) 610000 RF
| | - Derval S. Rosa
- Universidade Federal do ABC (UFABC).; Av. dos Estados, 5001 Santo André Sao Paulo Brazil
| | - Alexey L. Iordanskii
- Semenov Institute of Chemical Physics; Kosygin Str. 4 Moscow 119991 RF
- Vyatskiy State University; Moskovskaya ul. 36 Kirov (obl.) 610000 RF
| |
Collapse
|
6
|
Prusakov VE, Maksimov YV, Nishchev KN, Golub’ev AV, Beglov VI, Krupyanskii YF, Bychkova AV, Iordanskii AL, Berlin AA. Hybrid Biodegradable Nanocomposites Based on a Biopolyester Matrix and Magnetic Iron Oxide Nanoparticles: Structural, Magnetic, and Electronic Characteristics. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s1990793118010116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Barouti G, Jaffredo CG, Guillaume SM. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Iordanskii AL, Ol’khov AA, Karpova SG, Kucherenko EL, Kosenko RY, Rogovina SZ, Chalykh AE, Berlin AA. Influence of the structure and morphology of ultrathin poly(3-hydroxybutyrate) fibers on the diffusion kinetics and transport of drugs. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17030075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Karpova SG, Ol’khov AA, Shilkina NG, Popov AA, Filatova AG, Kucherenko EL, Iordanskii AL. Influence of drug on the structure and segmental mobility of poly(3-hydroxybutyrate) ultrafine fibers. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17010060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|