1
|
Scroccarello A, Molina-Hernández B, Della Pelle F, Ciancetta J, Ferraro G, Fratini E, Valbonetti L, Chaves Copez C, Compagnone D. Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger. Colloids Surf B Biointerfaces 2020; 199:111533. [PMID: 33388719 DOI: 10.1016/j.colsurfb.2020.111533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/26/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022]
Abstract
An exponential increase of scientific works dealing with the use of polyphenol-rich 'natural products' for the synthesis of bioactive AgNPs is in progress. However, a lack of fundamental studies on phytochemical compounds involved, and their role is evident. In this work, a comprehensive study of the antifungal performances of silver nanoparticles (AgNPs) synthesized exclusively with phenolic compounds (PCs) with different structures and different antioxidant capacity is presented. The experimental hypothesis is that AgNPs@PCs produced with different PCs can exert different toxicity. In particular, di-hydroxylic and tri-hydroxylic phenolic acids (caffeic acid and gallic acid) and flavonoids (catechin and myricetin) were compared. A room temperature rapid and simple AgNPs synthesis was carefully optimized, obtaining stable and reproducible colloids. AgNPs@PCs suspensions were characterized by UV-vis spectroscopy, ς-potential, dynamic light scattering and transmission electron microscopy. AgNPs@PCs radical scavenging capacity was also assessed. Finally, the AgNPs@PCs antifungal effect was tested against Aspergillus niger, particularly on spore germination and mycelial growth. The different antifungal activity was attributed to the different PCs' ability to generate/stabilize AgNPs with different shells, residual antioxidant capacity, and capacity to interact and aggregate during their 'attack' to A. niger hyphae. This work paves the way for the rational use of PCs and PCs rich-products for AgNPs-based applications.
Collapse
Affiliation(s)
- Annalisa Scroccarello
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Bernardo Molina-Hernández
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
| | - Johnny Ciancetta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Giovanni Ferraro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3-Sesto Fiorentino, I-50019, Florence, Italy
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3-Sesto Fiorentino, I-50019, Florence, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| | - Clemencia Chaves Copez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
2
|
Ya Muchkina E, Subbotin MA, Garmashova MK. The effect of nanoparticles of biogenic ferrihydrite on the development of Lepidium sativum L. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/315/4/042035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|