1
|
Aba RP, Sbahi S, Mugani R, Redouane EM, Hejjaj A, Azevedo J, Moreira CIT, Boo SF, Alexandrino DADM, Campos A, Vasconcelos V, Oudra B, Ouazzani N, Mandi L. Eco-friendly management of harmful cyanobacterial blooms in eutrophic lakes through vertical flow multi-soil-layering technology. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134281. [PMID: 38626680 DOI: 10.1016/j.jhazmat.2024.134281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
Eutrophication has led to the widespread occurrence of cyanobacterial blooms. Toxic cyanobacterial blooms with high concentrations of microcystins (MCs) have been identified in the Lalla Takerkoust reservoir in Morocco. The objective of this study was to evaluate the efficiency of the Multi-Soil-Layering (MSL) ecotechnology in removing natural cyanobacterial blooms from the lake. Two MSL pilots were used in rectangular glass tanks (60 × 10 × 70 cm). They consisted of permeable layers (PLs) made of pozzolan and a soil mixture layer (SML) containing local soil, ferrous metal, charcoal and sawdust. The main difference between the two systems was the type of local soil used: sandy soil for MSL1 and clayey soil for MSL2. Both MSL pilots effectively reduced cyanobacterial cell concentrations in the treated water to very low levels (0.09 and 0.001 cells/mL). MSL1 showed a gradual improvement in MC removal from 52 % to 99 %, while MSL2 started higher at 90 % but dropped to 54% before reaching 86%. Both MSL systems significantly reduced organic matter levels (97.2 % for MSL1 and 95.8 % for MSL2). Both MSLs were shown to be effective in removing cyanobacteria, MCs, and organic matter with comparable performance.
Collapse
Affiliation(s)
- Roseline Prisca Aba
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco; Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| | - Sofyan Sbahi
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco; National Institute of Scientific and Technological Research in Water, City of Innovation Souss Massa, Ibn Zohr University, BP 32/S, Riad Salam, CP 80000 Agadir, Morocco.
| | - Richard Mugani
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco; Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| | - El Mahdi Redouane
- Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| | - Abdessamad Hejjaj
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco.
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Cristiana Ivone Tavares Moreira
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Sergio Fernández Boo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Diogo Alves Da Mota Alexandrino
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| | - Naaila Ouazzani
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco; Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| | - Laila Mandi
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Av. Abdelkarim El Khattabi, P.O. Box: 511, 40000 Marrakech, Morocco; Water, Biodiversity and Climate change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco.
| |
Collapse
|
2
|
Mugani R, El Khalloufi F, Kasada M, Redouane EM, Haida M, Aba RP, Essadki Y, Zerrifi SEA, Herter SO, Hejjaj A, Aziz F, Ouazzani N, Azevedo J, Campos A, Putschew A, Grossart HP, Mandi L, Vasconcelos V, Oudra B. Monitoring of toxic cyanobacterial blooms in Lalla Takerkoust reservoir by satellite imagery and microcystin transfer to surrounding farms. HARMFUL ALGAE 2024; 135:102631. [PMID: 38830709 DOI: 10.1016/j.hal.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 µg L-1. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL-1, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.
Collapse
Affiliation(s)
- Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco; Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775, Stechlin, Germany
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P.: 145, 25000, Khouribga, Morocco
| | - Minoru Kasada
- Graduate School of Life Sciences, Tohoku University 6-3, Aoba, Sendai, 980-8578 Japan
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; UMR-I 02 INERIS-URCA-ULH SEBIO, University of Reims Champagne-Ardenne, Reims 51100, France
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| | - Roseline Prisca Aba
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim, 81000, Morocco
| | - Sven-Oliver Herter
- Department of Water Quality Engineering, Institute of Environmental Technology, Technical University Berlin, Berlin, Germany
| | - Abdessamad Hejjaj
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Faissal Aziz
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Naaila Ouazzani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Anke Putschew
- Department of Water Quality Engineering, Institute of Environmental Technology, Technical University Berlin, Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775, Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469, Potsdam, Germany
| | - Laila Mandi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| |
Collapse
|
3
|
Gu P, Wu H, Li Q, Zheng Z. Effects of suspended solids on cyanobacterial bloom formation under different wind fields. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47025-47035. [PMID: 35175518 DOI: 10.1007/s11356-022-19231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Wind waves and suspended solids (SS) generated by the resuspension of sediments are ubiquitous characteristics of lake ecosystems. However, their effects on phytoplankton remain poorly elucidated in shallow eutrophic lakes. Laboratory experiments were carried out to investigate the responses of Microcystis aeruginosa to SS under static (wind speed of 0 m/s) and breeze (wind speed of 3 m/s) conditions. Results showed that 50 mg/L SS can promote the growth of M. aeruginosa, accelerate the formation of colonies, and increase the floating rate under no-wind conditions. Comparing with static environment, breeze can significantly increase the growth rate of M. aeruginosa and benefit the formation of larger colonies of algae cells. Driven by wind and SS, the buoyancy of the cyanobacteria community in different experimental groups was obviously different. The specific performance was that low SS concentration and breeze were in favor of the floating of cyanobacteria, while high SS concentration went against the floating of algal cells. As a conclusion, wind speed of 3 m/s and 20-50 mg/L SS have a synergistic effect on the formation of cyanobacterial blooms. This study can provide an improved current understanding of bloom formation and turbidity management strategies in shallow eutrophic lakes.
Collapse
Affiliation(s)
- Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China.
| |
Collapse
|
4
|
Benredjem L, Berredjem H, Abdi A, Casero MC, Quesada A, Fosso B, Marzano M, Pesole G, Azevedo J, Vasconcelos V. Morphological, molecular, and biochemical study of cyanobacteria from a eutrophic Algerian reservoir (Cheffia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27624-27635. [PMID: 34984616 DOI: 10.1007/s11356-021-17528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The cyanobacteria management in water bodies requires a deep knowledge of the community composition. Considering the reliable and thorough information provided by the polyphasic approach in cyanobacteria taxonomy, here we assess the cyanobacterial community structure of the Cheffia reservoir from Algeria. Cyanobacteria were identified on the basis of morphological traits and next-generation sequencing (NGS); toxins-related genes were localized in addition to the identification of toxins; temperature and nutrient level of water samples were also determined. The polyphasic approach was essential for cyanobacteria investigation; 28 genera were identified through 16S rRNA metabarcoding with the dominance of taxa from Microcystis (34.2%), Aphanizomenon (20.1%), and Planktothrix (20.0%), and morphological analysis revealed the association in this water body of five species within the genus Microcystis: M. aeruginosa, M. novacekii, M. panniformis, M. ichthyoblabe, and M. flos-aquae. The presence of mcyE genotypes was detected; moreover, HPLC-PDA and LC-ESI-MS/MS revealed the production of microcystin-LR. Results obtained in our study are very important since this ecosystem is used for water supply and irrigation; as a consequence, a good water management plan is essential.
Collapse
Affiliation(s)
- Lamia Benredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Hajira Berredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Akila Abdi
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, 23000, Annaba, Algeria
| | - Maria Cristina Casero
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, ES-28049, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, ES-28049, Madrid, Spain
| | - Bruno Fosso
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Marinella Marzano
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Graziano Pesole
- Istituto Di Biomembrane, Bioenergetica E Biotecnologie Molecolari (IBIOM), CNR, Via Amendola 122/O, 70126, Bari, Italy
- Dipartimento Di Bioscienze, Biotecnologie E Biofarmaceutica, Università Degli Studi Di Bari "Aldo Moro", Via Orabona 4, 70126, Bari, Italy
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua Dos Bragas, 289, 4050-123, Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua Dos Bragas, 289, 4050-123, Porto, Portugal.
- Biology Department, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
5
|
Tazart Z, Manganelli M, Scardala S, Buratti FM, Nigro Di Gregorio F, Douma M, Mouhri K, Testai E, Loudiki M. Remediation Strategies to Control Toxic Cyanobacterial Blooms: Effects of Macrophyte Aqueous Extracts on Microcystis aeruginosa (Growth, Toxin Production and Oxidative Stress Response) and on Bacterial Ectoenzymatic Activities. Microorganisms 2021; 9:microorganisms9081782. [PMID: 34442861 PMCID: PMC8400474 DOI: 10.3390/microorganisms9081782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing toxic cyanobacterial blooms in freshwater demand environmentally friendly solutions to control their growth and toxicity, especially in arid countries, where most drinking water is produced from surface reservoirs. We tested the effects of macrophyte allelochemicals on Microcystis aeruginosa and on the fundamental role of bacteria in nutrient recycling. The effects of Ranunculus aquatilis aqueous extract, the most bioactive of four Moroccan macrophyte extracts, were tested in batch systems on M. aeruginosa growth, toxin production and oxidative stress response and on the ectoenzymatic activity associated with the bacterial community. M. aeruginosa density was reduced by 82.18%, and a significant increase in oxidative stress markers was evidenced in cyanobacterial cells. Microcystin concentration significantly decreased, and they were detected only intracellularly, an important aspect in managing toxic blooms. R. aquatilis extract had no negative effects on associated bacteria. These results confirm a promising use of macrophyte extracts, but they cannot be generalized. The use of the extract on other toxic strains, such as Planktothrix rubescens, Raphidiopsis raciborskii and Chrysosporum ovalisporum, caused a reduction in growth rate but not in cyanotoxin content, increasing toxicity. The need to assess species-specific cyanobacteria responses to verify the efficacy and safety of the extracts for human health and the environment is highlighted.
Collapse
Affiliation(s)
- Zakaria Tazart
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco; (K.M.); (M.L.)
| | - Maura Manganelli
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
- Correspondence:
| | - Simona Scardala
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
| | - Franca Maria Buratti
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
| | - Federica Nigro Di Gregorio
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
| | - Mountasser Douma
- Environmental Microbiology and Toxicology Research Unit, Polydisciplinary Faculty of Khouribga (FPK), Sultan Moulay Slimane University, Beni Mellal 23000, Morocco;
| | - Khadija Mouhri
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco; (K.M.); (M.L.)
| | - Emanuela Testai
- Istituto Superiore di Sanità, Environment & Health Department, Viale Regina Elena, 299, 00161 Rome, Italy; (Z.T.); (S.S.); (F.M.B.); (F.N.D.G.); (E.T.)
| | - Mohammed Loudiki
- Water, Biodiversity and Climate Change Laboratory, Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah P.O. Box 2390, Marrakech 40000, Morocco; (K.M.); (M.L.)
| |
Collapse
|
6
|
Wu X, Yang T, Feng S, Li L, Xiao B, Song L, Sukenik A, Ostrovsky I. Recovery of Microcystis surface scum following a mixing event: Insights from a tank experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138727. [PMID: 32361580 DOI: 10.1016/j.scitotenv.2020.138727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacteria of the genus Microcystis produces surface scum that negatively affects water quality in inland waters. This scum layer can be disintegrated and vertically dispersed by external forces (e.g., wind mixing), followed by reformation of surface scum as buoyant Microcystis colonies migrate upward. However, the recovery dynamics of Microcystis surface scum following a strong mixing event have rarely been studied. Here, we used a tank experiment to investigate the process of Microcystis surface scum recovery after a mixing event with focus on dynamics of colonies of different size classes and their contribution to that process. Microcystis colony size distribution and colony volume concentration was measured using a laser in-situ scattering and transmissometry instrument. The dynamics of Microcystis in the water column and upward colony migration velocity were strongly dependent on colony size. Larger colonies (>180 μm) with fast upward migration rates contributed the most to surface scum formation shortly after turbulence subsided. The contribution of slowly migrating smaller colonies to scum formation was observed over notably longer time. The estimated floating velocities of large colonies ranged 0.15 to 0.46 m h-1 depending on colony size and were 5-15 times higher than those of smaller colonies (~0.03 m h-1). The changes in colony size distribution of Microcystis in the water column reflect the dynamics of surface scum. Analysis of size distribution of Microcystis colonies can be used for better understanding and prediction of Microcystis surface scum development in water bodies.
Collapse
Affiliation(s)
- Xingqiang Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Tiantian Yang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Feng
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lirong Song
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Assaf Sukenik
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O.Box 447, Migdal 14950, Israel
| | - Ilia Ostrovsky
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O.Box 447, Migdal 14950, Israel.
| |
Collapse
|
7
|
Wu X, Noss C, Liu L, Lorke A. Effects of small-scale turbulence at the air-water interface on microcystis surface scum formation. WATER RESEARCH 2019; 167:115091. [PMID: 31561089 DOI: 10.1016/j.watres.2019.115091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacterial surface scum (here defined as visible Cyanobacteria colonies accumulating at the lake surface) is a harmful phenomenon that negatively affects water quality, human and animal health. Colony-forming Microcystis is one of the most important and ubiquitous genera that can suddenly accumulate at water surfaces. Turbulent water motion, e.g., generated by wind, can vertically disperse this scum layer, which later can re-establish by upward migration of Microcystis colonies. However, the role of wind-generated turbulence in scum formation and development is still poorly understood. Here we present results from a laboratory mesocosm study where we analysed the processes of scum formation and its response to wind-generated turbulence at low wind speed (≤3.6 m s-1). Microcystis colony size and flow velocity at the water surface and in the bulk water were measured using a microscope camera and particle tracking velocimetry. The surface scum formed by aggregation of colonies at the water surface, where they formed loose clusters of increasing size. The presence of large colony aggregations or of a surface film determined the stability of the scum layer. For the largest applied wind speed, most of the aggregations were broken down to sizes <2 mm, which were dispersed to the bulk water. The surface scum recovered quickly from such disturbances after the wind speed decreased. We further observed reduced momentum transfer from wind to water with the growing scum layer. The presence of the scum increased the threshold wind speed for the onset of flow and reduced the flow velocities that were generated above that threshold. This effect was likely caused by the presence of a film of surface-active material at the water surface (surface microlayer), which is related to the presence of Microcystis. Both the small-scale turbulence and surface microlayer might play an important, yet largely unexplored role in Microcystis surface scum development in aquatic ecosystems. Improved understanding of the interplay of both processes will be instrumental for improving current mechanistic models for predicting surface bloom dynamics.
Collapse
Affiliation(s)
- Xingqiang Wu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Institute for Environmental Sciences, University of Koblenz-Landau, Landau, 76829, Germany.
| | - Christian Noss
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, 76829, Germany
| | - Liu Liu
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, 76829, Germany; Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, 16775, Germany
| | - Andreas Lorke
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, 76829, Germany
| |
Collapse
|