1
|
Anikina I, Kamarova A, Issayeva K, Issakhanova S, Mustafayeva N, Insebayeva M, Mukhamedzhanova A, Khan SM, Ahmad Z, Lho LH, Han H, Raposo A. Plant protection from virus: a review of different approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1163270. [PMID: 37377807 PMCID: PMC10291191 DOI: 10.3389/fpls.2023.1163270] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
This review analyzes methods for controlling plant viral infection. The high harmfulness of viral diseases and the peculiarities of viral pathogenesis impose special requirements regarding developing methods to prevent phytoviruses. The control of viral infection is complicated by the rapid evolution, variability of viruses, and the peculiarities of their pathogenesis. Viral infection in plants is a complex interdependent process. The creation of transgenic varieties has caused much hope in the fight against viral pathogens. The disadvantages of genetically engineered approaches include the fact that the resistance gained is often highly specific and short-lived, and there are bans in many countries on the use of transgenic varieties. Modern prevention methods, diagnosis, and recovery of planting material are at the forefront of the fight against viral infection. The main techniques used for the healing of virus-infected plants include the apical meristem method, which is combined with thermotherapy and chemotherapy. These methods represent a single biotechnological complex method of plant recovery from viruses in vitro culture. It widely uses this method for obtaining non-virus planting material for various crops. The disadvantages of the tissue culture-based method of health improvement include the possibility of self-clonal variations resulting from the long-term cultivation of plants under in vitro conditions. The possibilities of increasing plant resistance by stimulating their immune system have expanded, which results from the in-depth study of the molecular and genetic bases of plant resistance toward viruses and the investigation of the mechanisms of induction of protective reactions in the plant organism. The existing methods of phytovirus control are ambiguous and require additional research. Further study of the genetic, biochemical, and physiological features of viral pathogenesis and the development of a strategy to increase plant resistance to viruses will allow a new level of phytovirus infection control to be reached.
Collapse
Affiliation(s)
- Irina Anikina
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | - Aidana Kamarova
- Biology and Ecology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | - Kuralay Issayeva
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | | | | | - Madina Insebayeva
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | | | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zeeshan Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Linda Heejung Lho
- College of Business, Division of Tourism and Hotel Management, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, Republic of Korea
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| |
Collapse
|
2
|
Anjanappa RB, Gruissem W. Current progress and challenges in crop genetic transformation. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153411. [PMID: 33872932 DOI: 10.1016/j.jplph.2021.153411] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 05/14/2023]
Abstract
Plant transformation remains the most sought-after technology for functional genomics and crop genetic improvement, especially for introducing specific new traits and to modify or recombine already existing traits. Along with many other agricultural technologies, the global production of genetically engineered crops has steadily grown since they were first introduced 25 years ago. Since the first transfer of DNA into plant cells using Agrobacterium tumefaciens, different transformation methods have enabled rapid advances in molecular breeding approaches to bring crop varieties with novel traits to the market that would be difficult or not possible to achieve with conventional breeding methods. Today, transformation to produce genetically engineered crops is the fastest and most widely adopted technology in agriculture. The rapidly increasing number of sequenced plant genomes and information from functional genomics data to understand gene function, together with novel gene cloning and tissue culture methods, is further accelerating crop improvement and trait development. These advances are welcome and needed to make crops more resilient to climate change and to secure their yield for feeding the increasing human population. Despite the success, transformation remains a bottleneck because many plant species and crop genotypes are recalcitrant to established tissue culture and regeneration conditions, or they show poor transformability. Improvements are possible using morphogenetic transcriptional regulators, but their broader applicability remains to be tested. Advances in genome editing techniques and direct, non-tissue culture-based transformation methods offer alternative approaches to enhance varietal development in other recalcitrant crops. Here, we review recent developments in plant transformation and regeneration, and discuss opportunities for new breeding technologies in agriculture.
Collapse
Affiliation(s)
- Ravi B Anjanappa
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland; Advanced Plant Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung City 402, Taiwan.
| |
Collapse
|