1
|
Rishi V, Valeev EF. Can the distinguishable cluster approximation be improved systematically by including connected triples? J Chem Phys 2019. [DOI: 10.1063/1.5097150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Varun Rishi
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
2
|
Lang J, Brabec J, Saitow M, Pittner J, Neese F, Demel O. Perturbative triples correction to domain-based local pair natural orbital variants of Mukherjee's state specific coupled cluster method. Phys Chem Chem Phys 2019; 21:5022-5038. [PMID: 30762044 DOI: 10.1039/c8cp03577f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article we report an implementation of the perturbative triples correction to Mukherjee's state-specific multireference coupled cluster method based on the domain-based pair natural orbital approach (DLPNO-MkCC). We tested the performance of DLPNO-MkCCSD(T) in calculations involving tetramethyleneethane and isomers of naphthynes. These tests show that more than 97% of triples energy was recovered with respect to the canonical MkCCSD(T) method, which together with the DLPNO-MkCCSD part accounts for about 99.70-99.85% of the total correlation energy. The applicability of the method was demonstrated on calculations of singlet-triplet gaps for several large systems: triangulene, dynemicin A, and a beryllium complex.
Collapse
Affiliation(s)
- Jakub Lang
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic.
| | | | | | | | | | | |
Collapse
|
3
|
Brabec J, Lang J, Saitow M, Pittner J, Neese F, Demel O. Domain-Based Local Pair Natural Orbital Version of Mukherjee’s State-Specific Coupled Cluster Method. J Chem Theory Comput 2018; 14:1370-1382. [DOI: 10.1021/acs.jctc.7b01184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiri Brabec
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jakub Lang
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
| | - Masaaki Saitow
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Ondřej Demel
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
4
|
Lee J, Small DW, Epifanovsky E, Head-Gordon M. Coupled-Cluster Valence-Bond Singles and Doubles for Strongly Correlated Systems: Block-Tensor Based Implementation and Application to Oligoacenes. J Chem Theory Comput 2017; 13:602-615. [DOI: 10.1021/acs.jctc.6b01092] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David W. Small
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Evgeny Epifanovsky
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Lyakh DI, Musiał M, Lotrich VF, Bartlett RJ. Multireference Nature of Chemistry: The Coupled-Cluster View. Chem Rev 2011; 112:182-243. [DOI: 10.1021/cr2001417] [Citation(s) in RCA: 363] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitry I. Lyakh
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Monika Musiał
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Victor F. Lotrich
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Rodney J. Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Li X, Paldus J. Multireference coupled-cluster study of the symmetry breaking in the C2B radical. J Chem Phys 2011; 134:074301. [DOI: 10.1063/1.3554210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
7
|
Lyakh DI, Lotrich VF, Bartlett RJ. The ‘tailored’ CCSD(T) description of the automerization of cyclobutadiene. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2010.11.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Paldus J, Pittner J, Čársky P. Multireference Coupled-Cluster Methods: Recent Developments. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-90-481-2885-3_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Development and pilot molecular applications of the uncoupled state-specific MRCC (UC-SS-MRCC) theory. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Paldus J, Li X. Correction for Triples in Reduced Multireference Coupled-Cluster Approaches. ACTA ACUST UNITED AC 2007. [DOI: 10.1135/cccc20070100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The performance of the recently proposed version of the reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (SD), which employs a modest-size configuration interaction wave function as an external source for a small subset of approximate connected three- and four-body cluster amplitudes that are primarily responsible for the nondynamic correlation effects, and which has been perturbatively corrected for the remaining triples along the same line as in the standard CCSD(T) method (Li X., Paldus J.: J. Chem. Phys. 2006, 124, 174101), referred to by the acronym RMR CCSD(T), is being tested by evaluating equilibrium spectroscopic constants for a demanding system of the beryllium dimer, as well as by computing atomization energies for several di- and triatomics. The focus is on the equilibrium properties, since it has been demonstrated earlier that the RMR CCSD method corrects well for the nondynamic correlation in bond-breaking situations. We find that in all the cases we have examined, the RMR CCSD(T) method does in fact improve the performance of CCSD(T) even in the vicinity of the equilibrium geometry. For states possessing a moderate multireference character, the improvement in computed thermochemical properties relative to CCSD(T) amounts to a few kJ/mol, a meaningful amount when striving for chemical accuracy.
Collapse
|
11
|
Li X, Paldus J. A truncated version of reduced multireference coupled-cluster method with singles and doubles and noniterative triples: Application to F2 and Ni(CO)n (n=1, 2, and 4). J Chem Phys 2006; 125:164107. [PMID: 17092063 DOI: 10.1063/1.2361295] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A perturbatively truncated version of the reduced multireference coupled-cluster method with singles and doubles and noniterative triples RMR CCSD(T) is described. In the standard RMR CCSD method, the effect of all triples and quadruples that are singles or doubles relative to references spanning a chosen multireference (MR) model space is accounted for via the external corrections based on the MR CISD wave function. In the full version of RMR CCSD(T), the remaining triples are then handled via perturbative corrections as in the standard, single-reference (SR) CCSD(T) method. By using a perturbative threshold in the selection of MR CISD configuration space, we arrive at the truncated version of RMR CCSD(T), in which the dimension of the MR CISD problem is significantly reduced, thus leaving more triples to be treated perturbatively. This significantly reduces the computational cost. We illustrate this approach on the F2 molecule, in which case the computational cost of the truncated version of RMR CCSD(T) is only about 10%-20% higher than that of the standard CCSD(T), while still eliminating the failure of CCSD(T) in the bond breaking region of geometries. To demonstrate the capabilities of the method, we have also used it to examine the structure and binding energy of transition metal complexes Ni(CO)n with n=1, 2, and 4. In particular, Ni(CO)2 is shown to be bent rather than linear, as implied by some earlier studies. The RMR CCSD(T) binding energy differs from the SR CCSD(T) one by 1-2 kcal/mol, while the energy barrier separating the linear and bent structures of Ni(CO)2 is smaller than 1 kcal/mol.
Collapse
Affiliation(s)
- Xiangzhu Li
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
12
|
Rolik Z, Szabados Á, Kőhalmi D, Surján P. Coupled-cluster theory and the method of moments. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.theochem.2006.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Li X, Paldus J. Diagonal perturbative triple corrections to the general‐model‐space state‐universal coupled‐cluster method: Are they warranted and useful? Mol Phys 2006. [DOI: 10.1080/00268976.2006.10384474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Li X, Paldus J. Reduced multireference coupled cluster method with singles and doubles: Perturbative corrections for triples. J Chem Phys 2006; 124:174101. [PMID: 16689561 DOI: 10.1063/1.2194543] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reduced multireference coupled-cluster method with singles and doubles (RMR CCSD) that employs multireference configuration interaction wave function as an external source for a small subset of approximate connected triples and quadruples, is perturbatively corrected for the remaining triples along the same lines as in the standard CCSD(T) method. The performance of the resulting RMR CCSD(T) method is tested on four molecular systems, namely, the HF and F(2) molecules, the NO radical, and the F(2) (+) cation, representing distinct types of molecular structure, using up to and including a cc-pVQZ basis set. The results are compared with those obtained with the standard CCSD(T), UCCSD(T), CCSD(2), and CR CCSD(T) methods, wherever applicable or available. An emphasis is made on the quality of the computed potentials in a broad range of internuclear separations and on the computed equilibrium spectroscopic properties, in particular, harmonic frequencies omega(e). It is shown that RMR CCSD(T) outperforms other triply corrected methods and is widely applicable.
Collapse
Affiliation(s)
- Xiangzhu Li
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
15
|
Multireference State-specific Coupled Cluster Approach with the CAS Reference: Inserting Be into H2. Theor Chem Acc 2006. [DOI: 10.1007/s00214-006-0094-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|