1
|
Spinozzi E, Baldassarri C, Acquaticci L, Del Bello F, Grifantini M, Cappellacci L, Riccardo P. Adenosine receptors as promising targets for the management of ocular diseases. Med Chem Res 2021; 30:353-370. [PMID: 33519168 PMCID: PMC7829661 DOI: 10.1007/s00044-021-02704-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
The ocular drug discovery arena has undergone a significant improvement in the last few years culminating in the FDA approvals of 8 new drugs. However, despite a large number of drugs, generics, and combination products available, it remains an urgent need to find breakthrough strategies and therapies for tackling ocular diseases. Targeting the adenosinergic system may represent an innovative strategy for discovering new ocular therapeutics. This review focused on the recent advance in the field and described the numerous nucleoside and non-nucleoside modulators of the four adenosine receptors (ARs) used as potential tools or clinical drug candidates.
Collapse
Affiliation(s)
- Eleonora Spinozzi
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Cecilia Baldassarri
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Laura Acquaticci
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Mario Grifantini
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Petrelli Riccardo
- School of Pharmacy Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
2
|
Suresh RR, Jain S, Chen Z, Tosh DK, Ma Y, Podszun MC, Rotman Y, Salvemini D, Jacobson KA. Design and in vivo activity of A 3 adenosine receptor agonist prodrugs. Purinergic Signal 2020; 16:367-377. [PMID: 32720036 PMCID: PMC7524976 DOI: 10.1007/s11302-020-09715-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Prodrugs (MRS7422, MRS7476) of highly selective A3 adenosine receptor (AR) agonists Cl-IB-MECA and MRS5698, respectively, were synthesized by succinylation of the 2' and 3' hydroxyl groups, and the parent, active drug was shown to be readily liberated upon incubation with liver esterases. The prodrug MRS7476 had greatly increased aqueous solubility compared with parent MRS5698 and was fully efficacious and with a longer duration than MRS7422 in reversing mouse neuropathic pain (chronic constriction injury model, 3 μmol/kg, p.o.), a known A3AR effect. MRS7476 (5 mg/kg, p.o., twice daily) was found to protect against non-alcoholic steatohepatitis (NASH) in the STAM mouse model, indicated by the NAFLD activity score. Hepatocyte ballooning, IL-10 production, and liver histology were significantly normalized in the MRS7476-treated mice, but not liver fibrosis (no change in ACTA2 levels) or inflammation. Hepatic expression of ADORA3 in human NAFLD patients was 1.9-fold lower compared to normal controls. Adora3 expression determined by qPCR in primary mouse liver was associated with the stellate cells, and its mouse full body A3AR knockout worsened liver markers of inflammation and steatosis. Thus, we have introduced a reversible prodrug strategy that enables water solubility and in vivo activity of masked A3AR agonists in models of two disease conditions.
Collapse
Affiliation(s)
- R. Rama Suresh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, 9000 Rockville Pike, Bethesda, MD 20892-0810 USA
| | - Shanu Jain
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, 9000 Rockville Pike, Bethesda, MD 20892-0810 USA
| | - Zhoumou Chen
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO USA
| | - Dilip K. Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, 9000 Rockville Pike, Bethesda, MD 20892-0810 USA
| | - Yanling Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD USA
| | - Maren C. Podszun
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD USA
| | - Yaron Rotman
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO USA
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, 9000 Rockville Pike, Bethesda, MD 20892-0810 USA
| |
Collapse
|
3
|
Jacobson KA, Civan MM. Ocular Purine Receptors as Drug Targets in the Eye. J Ocul Pharmacol Ther 2016; 32:534-547. [PMID: 27574786 PMCID: PMC5069731 DOI: 10.1089/jop.2016.0090] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Agonists and antagonists of various subtypes of G protein coupled adenosine receptors (ARs), P2Y receptors (P2YRs), and ATP-gated P2X receptor ion channels (P2XRs) are under consideration as agents for the treatment of ocular diseases, including glaucoma and dry eye. Numerous nucleoside and nonnucleoside modulators of the receptors are available as research tools and potential therapeutic molecules. Three of the 4 subtypes of ARs have been exploited with clinical candidate molecules for treatment of the eye: A1, A2A, and A3. An A1AR agonist is in clinical trials for glaucoma, A2AAR reduces neuroinflammation, A3AR protects retinal ganglion cells from apoptosis, and both A3AR agonists and antagonists had been reported to lower intraocular pressure (IOP). Extracellular concentrations of endogenous nucleotides, including dinucleoside polyphosphates, are increased in pathological states, activating P2Y and P2XRs throughout the eye. P2YR agonists, including P2Y2 and P2Y6, lower IOP. Antagonists of the P2X7R prevent the ATP-induced neuronal apoptosis in the retina. Thus, modulators of the purinome in the eye might be a source of new therapies for ocular diseases.
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mortimer M. Civan
- Departments of Physiology and Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Wang Z, Do CW, Avila MY, Peterson-Yantorno K, Stone RA, Gao ZG, Joshi B, Besada P, Jeong LS, Jacobson KA, Civan MM. Nucleoside-derived antagonists to A3 adenosine receptors lower mouse intraocular pressure and act across species. Exp Eye Res 2010; 90:146-54. [PMID: 19878673 PMCID: PMC2789191 DOI: 10.1016/j.exer.2009.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/02/2009] [Accepted: 10/07/2009] [Indexed: 11/21/2022]
Abstract
The purpose of the study was to determine whether novel, selective antagonists of human A3 adenosine receptors (ARs) derived from the A3-selective agonist Cl-IB-MECA lower intraocular pressure (IOP) and act across species. IOP was measured invasively with a micropipette by the Servo-Null Micropipette System (SNMS) and by non-invasive pneumotonometry during topical drug application. Antagonist efficacy was also assayed by measuring inhibition of adenosine-triggered shrinkage of native bovine nonpigmented ciliary epithelial (NPE) cells. Five agonist-based A3AR antagonists lowered mouse IOP measured with SNMS tonometry by 3-5 mm Hg within minutes of topical application. Of the five agonist derivatives, LJ 1251 was the only antagonist to lower IOP measured by pneumotonometry. No effect was detected pneumotonometrically over 30 min following application of the other four compounds, consonant with slower, smaller responses previously measured non-invasively following topical application of A3AR agonists and the dihydropyridine A3AR antagonist MRS 1191. Latanoprost similarly lowered SNMS-measured IOP, but not IOP measured non-invasively over 30 min. Like MRS 1191, agonist-based A3AR antagonists applied to native bovine NPE cells inhibited adenosine-triggered shrinkage. In summary, the results indicate that antagonists of human A3ARs derived from the potent, selective A3 agonist Cl-IB-MECA display efficacy in mouse and bovine cells, as well. When intraocular delivery was enhanced by measuring mouse IOP invasively, five derivatives of the A3AR agonist Cl-IB-MECA lowered IOP but only one rapidly reduced IOP measured non-invasively after topical application. We conclude that derivatives of the highly-selective A3AR agonist Cl-IB-MECA can reduce IOP upon reaching their intraocular target, and that nucleoside-based derivatives are promising A3 antagonists for study in multiple animal models.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|