2
|
Stiborová M, Indra R, Frei E, Kopečková K, Schmeiser HH, Eckschlager T, Adam V, Heger Z, Arlt VM, Martínek V. Cytochrome b5 plays a dual role in the reaction cycle of cytochrome P450 3A4 during oxidation of the anticancer drug ellipticine. MONATSHEFTE FUR CHEMIE 2017; 148:1983-1991. [PMID: 29104319 PMCID: PMC5653753 DOI: 10.1007/s00706-017-1986-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022]
Abstract
Abstract Ellipticine is an anticancer agent that forms covalent DNA adducts after enzymatic activation by cytochrome P450 (CYP) enzymes, mainly by CYP3A4. This process is one of the most important ellipticine DNA-damaging mechanisms for its antitumor action. Here, we investigated the efficiencies of human hepatic microsomes and human recombinant CYP3A4 expressed with its reductase, NADPH:CYP oxidoreductase (POR), NADH:cytochrome b5 reductase and/or cytochrome b5 in Supersomes™ to oxidize this drug. We also evaluated the effectiveness of coenzymes of two of the microsomal reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of NADH:cytochrome b5 reductase, to mediate ellipticine oxidation in these enzyme systems. Using HPLC analysis we detected up to five ellipticine metabolites, which were formed by human hepatic microsomes and human CYP3A4 in the presence of NADPH or NADH. Among ellipticine metabolites, 9-hydroxy-, 12-hydroxy-, and 13-hydroxyellipticine were formed by hepatic microsomes as the major metabolites, while 7-hydroxyellipticine and the ellipticine N2-oxide were the minor ones. Human CYP3A4 in Supersomes™ generated only three metabolic products, 9-hydroxy-, 12-hydroxy-, and 13-hydroxyellipticine. Using the 32P-postlabeling method two ellipticine-derived DNA adducts were generated by microsomes and the CYP3A4-Supersome system, both in the presence of NADPH and NADH. These adducts were derived from the reaction of 13-hydroxy- and 12-hydroxyellipticine with deoxyguanosine in DNA. In the presence of NADPH or NADH, cytochrome b5 stimulated the CYP3A4-mediated oxidation of ellipticine, but the stimulation effect differed for individual ellipticine metabolites. This heme protein also stimulated the formation of both ellipticine-DNA adducts. The results demonstrate that cytochrome b5 plays a dual role in the CYP3A4-catalyzed oxidation of ellipticine: (1) cytochrome b5 mediates CYP3A4 catalytic activities by donating the first and second electron to this enzyme in its catalytic cycle, indicating that NADH:cytochrome b5 reductase can substitute NADPH-dependent POR in this enzymatic reaction and (2) cytochrome b5 can act as an allosteric modifier of the CYP3A4 oxygenase. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Eva Frei
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Kateřina Kopečková
- Department of Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tomáš Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty, Charles University and University Hospital Motol, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Vojtěch Adam
- Laboratory of Metallomics and Nanotechnology, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Zbyněk Heger
- Laboratory of Metallomics and Nanotechnology, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH UK
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| |
Collapse
|
4
|
Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem J 2013; 453:219-30. [PMID: 23651100 DOI: 10.1042/bj20130398] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We investigated the relationship between oligomerization of CYP3A4 (cytochrome P450 3A4) and its response to ANF (α-naphthoflavone), a prototypical heterotropic activator. The addition of ANF resulted in over a 2-fold increase in the rate of CYP3A4-dependent debenzylation of 7-BFC [7-benzyloxy-4-(trifluoromethyl)coumarin] in HLM (human liver microsomes), but failed to produce activation in BD Supersomes or Baculosomes containing recombinant CYP3A4 and NADPH-CPR (cytochrome P450 reductase). However, incorporation of purified CYP3A4 into Supersomes containing only recombinant CPR reproduced the behaviour observed with HLM. The activation in this system was dependent on the surface density of the enzyme. Although no activation was detectable at an L/P (lipid/P450) ratio ≥750, it reached 225% at an L/P ratio of 140. To explore the relationship between this effect and CYP3A4 oligomerization, we probed P450-P450 interactions with a new technique that employs LRET (luminescence resonance energy transfer). The amplitude of LRET in mixed oligomers of the haem protein labelled with donor and acceptor fluorophores exhibited a sigmoidal dependence on the surface density of CYP3A4 in Supersomes™. The addition of ANF eliminated this sigmoidal character and increased the degree of oligomerization at low enzyme concentrations. Therefore the mechanisms of CYP3A4 allostery with ANF involve effector-dependent modulation of P450-P450 interactions.
Collapse
|
5
|
Levová K, Moserová M, Kotrbová V, Šulc M, Henderson CJ, Wolf CR, Phillips DH, Frei E, Schmeiser HH, Mareš J, Arlt VM, Stiborová M. Role of Cytochromes P450 1A1/2 in Detoxication and Activation of Carcinogenic Aristolochic Acid I: Studies with the Hepatic NADPH:Cytochrome P450 Reductase Null (HRN) Mouse Model. Toxicol Sci 2011; 121:43-56. [DOI: 10.1093/toxsci/kfr050] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
6
|
Frank DJ, Denisov IG, Sligar SG. Analysis of heterotropic cooperativity in cytochrome P450 3A4 using alpha-naphthoflavone and testosterone. J Biol Chem 2010; 286:5540-5. [PMID: 21177853 DOI: 10.1074/jbc.m110.182055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) displays non-Michaelis-Menten kinetics for many of the substrates it metabolizes, including testosterone (TST) and α-naphthoflavone (ANF). Heterotropic effects between these two substrates can further complicate the metabolic profile of the enzyme. In this work, monomeric CYP3A4 solubilized in Nanodiscs has been studied for its ability to interact with varying molar ratios of ANF and TST. Comparison of the observed heme spin state, NADPH consumption, and product formation rates with a non-cooperative model calculated from a linear combination of the global analysis of each substrate reveals a detailed landscape of the heterotropic interactions and indicates negligible binding cooperativity between ANF and TST. The observed effect of ANF on the kinetics of TST metabolism is due to the additive action of the second substrate with no specific allosteric effects.
Collapse
Affiliation(s)
- Daniel J Frank
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|