2
|
Pecina A, Meier R, Fanfrlík J, Lepšík M, Řezáč J, Hobza P, Baldauf C. The SQM/COSMO filter: reliable native pose identification based on the quantum-mechanical description of protein–ligand interactions and implicit COSMO solvation. Chem Commun (Camb) 2016; 52:3312-5. [DOI: 10.1039/c5cc09499b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Strictly uphill – in cognate docking experiments we show that a quantum mechanical description of interaction and solvation outperforms established scoring functions in sharply distinguishing the native state from decoy poses.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - René Meier
- Institut für Biochemie
- Fakultät für Biowissenschaften
- Pharmazie und Psychologie
- Universität Leipzig
- D-04109 Leipzig
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
| | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft
- D-14195 Berlin
- Germany
| |
Collapse
|
3
|
Vorlová B, Nachtigallová D, Jirásková-Vaníčková J, Ajani H, Jansa P, Rezáč J, Fanfrlík J, Otyepka M, Hobza P, Konvalinka J, Lepšík M. Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study. Eur J Med Chem 2014; 89:189-97. [PMID: 25462239 DOI: 10.1016/j.ejmech.2014.10.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
Overactivation of NMDA receptors has been implicated in various neuropathological conditions, including brain ischaemia, neurodegenerative disorders and epilepsy. Production of d-serine, an NMDA receptor co-agonist, from l-serine is catalyzed in vivo by the pyridoxal-5'-phosphate (PLP)-dependent enzyme serine racemase. Specific inhibition of this enzyme has been proposed as a promising strategy for treatment of neurological conditions caused by NMDA receptor dysfunction. Here we present the synthesis and activity analysis of a series of malonate-based inhibitors of mouse serine racemase (mSR). The compounds possessed IC50 values ranging from 40 ± 11 mM for 2,2-bis(hydroxymethyl)malonate down to 57 ± 1 μM for 2,2-dichloromalonate, the most effective competitive mSR inhibitor known to date. The structure-activity relationship of the whole series in the human orthologue (hSR) was interpreted using Glide docking, WaterMap analysis of hydration and quantum mechanical calculations based on the X-ray structure of the hSR/malonate complex. Docking into the hSR active site with three thermodynamically favourable water molecules was able to discern qualitatively between good and weak inhibitors. Further improvement in ranking was obtained using advanced PM6-D3H4X/COSMO semiempirical quantum mechanics-based scoring which distinguished between the compounds with IC50 better/worse than 2 mM. We have thus not only found a new potent hSR inhibitor but also worked out a computer-assisted protocol to rationalize the binding affinity which will thus aid in search for more effective SR inhibitors. Novel, potent hSR inhibitors may represent interesting research tools as well as drug candidates for treatment of diseases associated with NMDA receptor overactivation.
Collapse
Affiliation(s)
- Barbora Vorlová
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jana Jirásková-Vaníčková
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Haresh Ajani
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46 Olomouc, Czech Republic
| | - Petr Jansa
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jan Rezáč
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46 Olomouc, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46 Olomouc, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
4
|
Mader P, Pecina A, Cígler P, Lepšík M, Šícha V, Hobza P, Grüner B, Fanfrlík J, Brynda J, Řezáčová P. Carborane-based carbonic anhydrase inhibitors: insight into CAII/CAIX specificity from a high-resolution crystal structure, modeling, and quantum chemical calculations. BIOMED RESEARCH INTERNATIONAL 2014; 2014:389869. [PMID: 25309911 PMCID: PMC4189773 DOI: 10.1155/2014/389869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/08/2014] [Indexed: 12/03/2022]
Abstract
Carborane-based compounds are promising lead structures for development of inhibitors of carbonic anhydrases (CAs). Here, we report structural and computational analysis applicable to structure-based design of carborane compounds with selectivity toward the cancer-specific CAIX isoenzyme. We determined the crystal structure of CAII in complex with 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane at 1.0 Å resolution and used this structure to model the 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane interactions with CAIX. A virtual glycine scan revealed the contributions of individual residues to the energy of binding of 1-methylenesulfamide-1,2-dicarba-closo-dodecaborane to CAII and CAIX, respectively.
Collapse
Affiliation(s)
- Pavel Mader
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 140 00 Prague 4, Czech Republic
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G 1L7
| | - Adam Pecina
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Petr Cígler
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Václav Šícha
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Hlavní 1001, 250 68 Řež near Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
- Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University, 77146 Olomouc, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Hlavní 1001, 250 68 Řež near Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jiří Brynda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 140 00 Prague 4, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Pavlína Řezáčová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 140 00 Prague 4, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
5
|
Fanfrlík J, Brahmkshatriya PS, Řezáč J, Jílková A, Horn M, Mareš M, Hobza P, Lepšík M. Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors. J Phys Chem B 2013; 117:14973-82. [PMID: 24195769 DOI: 10.1021/jp409604n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The quantum mechanics (QM)-based scoring function that we previously developed for the description of noncovalent binding in protein-ligand complexes has been modified and extended to treat covalent binding of inhibitory ligands. The enhancements are (i) the description of the covalent bond breakage and formation using hybrid QM/semiempirical QM (QM/SQM) restrained optimizations and (ii) the addition of the new ΔG(cov)' term to the noncovalent score, describing the "free" energy difference between the covalent and noncovalent complexes. This enhanced QM-based scoring function is applied to a series of 20 vinyl sulfone-based inhibitory compounds inactivating the cysteine peptidase cathepsin B1 of the Schistosoma mansoni parasite (SmCB1). The available X-ray structure of the SmCB1 in complex with a potent vinyl sulfone inhibitor K11017 is used as a template to build the other covalently bound complexes and to model the derived noncovalent complexes. We present the correlation of the covalent score and its constituents with the experimental binding data. Four outliers are identified. They contain bulky R1' substituents structurally divergent from the template, which might induce larger protein rearrangements than could be accurately modeled. In summary, we propose a new computational approach and an optimal protocol for the rapid evaluation and prospective design of covalent inhibitors with a conserved binding mode.
Collapse
Affiliation(s)
- Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, v.v.i., and Gilead Sciences and IOCB Research Center, Academy of Sciences of the Czech Republic , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Řezáč J, Hobza P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J Chem Theory Comput 2011; 8:141-51. [DOI: 10.1021/ct200751e] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jan Řezáč
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46 Olomouc, Czech Republic
| |
Collapse
|