1
|
Abend NS, Wusthoff CJ, Jensen FE, Inder TE, Volpe JJ. Neonatal Seizures. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:381-448.e17. [DOI: 10.1016/b978-0-443-10513-5.00015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Mastrangelo M, Gasparri V, Bernardi K, Foglietta S, Ramantani G, Pisani F. Epilepsy Phenotypes of Vitamin B6-Dependent Diseases: An Updated Systematic Review. CHILDREN 2023; 10:children10030553. [PMID: 36980111 PMCID: PMC10047402 DOI: 10.3390/children10030553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Background: Vitamin B6-dependent epilepsies include treatable diseases responding to pyridoxine or pyridoxal-5Iphosphate (ALDH7A1 deficiency, PNPO deficiency, PLP binding protein deficiency, hyperprolinemia type II and hypophosphatasia and glycosylphosphatidylinositol anchor synthesis defects). Patients and methods: We conducted a systematic review of published pediatric cases with a confirmed molecular genetic diagnosis of vitamin B6-dependent epilepsy according to PRISMA guidelines. Data on demographic features, seizure semiology, EEG patterns, neuroimaging, treatment, and developmental outcomes were collected. Results: 497 published patients fulfilled the inclusion criteria. Seizure onset manifested at 59.8 ± 291.6 days (67.8% of cases in the first month of life). Clonic, tonic-clonic, and myoclonic seizures accounted for two-thirds of the cases, while epileptic spasms were observed in 7.6%. Burst-suppression/suppression-burst represented the most frequently reported specific EEG pattern (14.4%), mainly in PLPB, ALDH7A1, and PNPO deficiency. Pyridoxine was administered to 312 patients (18.5% intravenously, 76.9% orally, 4.6% not specified), and 180 also received antiseizure medications. Pyridoxine dosage ranged between 1 and 55 mg/kg/die. Complete seizure freedom was achieved in 160 patients, while a significant seizure reduction occurred in 38. PLP, lysine-restricted diet, and arginine supplementation were used in a small proportion of patients with variable efficacy. Global developmental delay was established in 30.5% of a few patients in whom neurocognitive tests were performed. Conclusions: Despite the wide variability, the most frequent hallmarks of the epilepsy phenotype in patients with vitamin B6-dependent seizures include generalized or focal motor seizure semiology and a burst suppression/suppression burst pattern in EEG.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
- Correspondence:
| | - Valentina Gasparri
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Katerina Bernardi
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Foglietta
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Georgia Ramantani
- Department of Neuropediatrics, University Children’s Hospital Zurich and University of Zurich, 8032 Zurich, Switzerland
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| |
Collapse
|
3
|
Zhang L, Li X, Zhang J, Xu G. Prognostic Implication and Oncogenic Role of PNPO in Pan-Cancer. Front Cell Dev Biol 2022; 9:763674. [PMID: 35127701 PMCID: PMC8814662 DOI: 10.3389/fcell.2021.763674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Pyridoxine 5'-phosphate oxidase (PNPO) is a key enzyme in the metabolism of vitamin B6 and affects the tumorigenesis of ovarian and breast cancers. However, the roles of PNPO in other types of cancer remain unknown. Methods: The expression of PNPO was interpreted by The Cancer Genome Atlas (TCGA) database and Genotype Tissue-Expression (GTEX) database. Analysis of PNPO genomic alterations and protein expression in human organic tissues was analyzed by the cBioPortal database and human multiple organ tissue arrays. PNPO with drug sensitivity analysis was performed from the CellMiner database. The correlations between PNPO expression and survival outcomes, clinical features, DNA mismatch repair system (MMR), microsatellite instability (MSI), tumor mutation burden (TMB), and immune-associated cell infiltration were analyzed using the TCGA, ESTIMATE algorithm, and TIMER databases. Gene Set Enrichment Analysis (GSEA) was applied to elucidate the biological function of PNPO in pan-cancer. Results: The differential analysis showed that the level of PNPO mRNA expression was upregulated in 21 tumor types compared with normal tissues, which was consistent with its protein expression in most cancer types. The abnormal expression of PNPO could predict the survival outcome of patients with esophageal carcinoma (ESCA), kidney renal clear cell carcinoma (KIRC), prostate adenocarcinoma (PRAD), ovarian serous cystadenocarcinoma (OV), and uveal melanoma (UVM). Furthermore, the most frequent mutation type of PNPO genomic was amplified. Moreover, the aberrant PNPO expression was related to MMR, MSI, TMB, and drug sensitivity in various types of cancer. The expression of PNPO was related to the infiltration levels of various immune-associated cells in pan-cancer by ESTIMATE algorithm and TIMER database mining. Conclusion: Our results suggest that PNPO is a potential molecular biomarker for predicting patient prognosis, drug sensitivity, and immunoreaction in pan-cancer.
Collapse
Affiliation(s)
- Lingyun Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Kaminiów K, Pająk M, Pająk R, Paprocka J. Pyridoxine-Dependent Epilepsy and Antiquitin Deficiency Resulting in Neonatal-Onset Refractory Seizures. Brain Sci 2021; 12:65. [PMID: 35053812 PMCID: PMC8773593 DOI: 10.3390/brainsci12010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/29/2022] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is an autosomal recessive neurometabolic disorder due to a deficiency of α-aminoadipic semialdehyde dehydrogenase (mutation in ALDH7A1 gene), more commonly known as antiquitin (ATQ). ATQ is one of the enzymes involved in lysine oxidation; thus, its deficiency leads to the accumulation of toxic metabolites in body fluids. PDE is characterized by persistent, recurrent neonatal seizures that cannot be well controlled by antiepileptic drugs but are responsive clinically and electrographically to daily pyridoxine (vitamin B6) supplementation. Although the phenotypic spectrum distinguishes between typical and atypical, pyridoxine-dependent is true for each. Diagnosis may pose a challenge mainly due to the rarity of the disorder and the fact that seizures may not occur until childhood or even late adolescence. Moreover, patients may not demonstrate an obvious clinical or electroencephalography response to the initial dose of pyridoxine. Effective treatment requires lifelong pharmacologic supplements of pyridoxine, and dietary lysine restriction and arginine enrichment should improve prognosis and avoid developmental delay and intellectual disability. The purpose of this review is to summarize briefly the latest reports on the etiology, clinical symptoms, diagnosis, and management of patients suffering from pyridoxine-dependent epilepsy.
Collapse
Affiliation(s)
- Konrad Kaminiów
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (M.P.); (R.P.)
| | - Magdalena Pająk
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (M.P.); (R.P.)
| | - Renata Pająk
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (M.P.); (R.P.)
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
5
|
Ghatge MS, Al Mughram M, Omar AM, Safo MK. Inborn errors in the vitamin B6 salvage enzymes associated with neonatal epileptic encephalopathy and other pathologies. Biochimie 2021; 183:18-29. [PMID: 33421502 PMCID: PMC11273822 DOI: 10.1016/j.biochi.2020.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the active cofactor form of vitamin B6 is required by over 160 PLP-dependent (vitamin B6) enzymes serving diverse biological roles, such as carbohydrates, amino acids, hemes, and neurotransmitters metabolism. Three key enzymes, pyridoxal kinase (PL kinase), pyridoxine 5'-phosphate oxidase (PNPO), and phosphatases metabolize and supply PLP to PLP-dependent enzymes through the salvage pathway. In born errors in the salvage enzymes are known to cause inadequate levels of PLP in the cell, particularly in neuronal cells. The resulting PLP deficiency is known to cause or implicated in several pathologies, most notably seizures. One such disorder, PNPO-dependent neonatal epileptic encephalopathy (NEE) results from natural mutations in PNPO and leads to null or reduced enzymatic activity. NEE does not respond to conventional antiepileptic drugs but may respond to treatment with the B6 vitamers PLP and/or pyridoxine (PN). In born errors that lead to PLP deficiency in cells have also been reported in PL kinase, however, to date none has been associated with epilepsy or seizure. One such pathology is polyneuropathy that responds to PLP therapy. Phosphatase deficiency or hypophosphatasia disorder due to pathogenic mutations in alkaline phosphatase is known to cause seizures that respond to PN therapy. In this article, we review the biochemical features of in born errors pertaining to the salvage enzyme's deficiency that leads to NEE and other pathologies. We also present perspective on vitamin B6 treatment for these disorders, along with attempts to develop zebrafish model to study the NEE syndrome in vivo.
Collapse
Affiliation(s)
- Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mohammed Al Mughram
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
6
|
Alghamdi M, Bashiri FA, Abdelhakim M, Adly N, Jamjoom DZ, Sumaily KM, Alghanem B, Arold ST. Phenotypic and molecular spectrum of pyridoxamine-5'-phosphate oxidase deficiency: A scoping review of 87 cases of pyridoxamine-5'-phosphate oxidase deficiency. Clin Genet 2021; 99:99-110. [PMID: 32888189 PMCID: PMC7820968 DOI: 10.1111/cge.13843] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Pyridoxamine-5'-phosphate oxidase (PNPO) deficiency is an autosomal recessive pyridoxal 5'-phosphate (PLP)-vitamin-responsive epileptic encephalopathy. The emerging feature of PNPO deficiency is the occurrence of refractory seizures in the first year of life. Pre-maturity and fetal distress, combined with neonatal seizures, are other associated key characteristics. The phenotype results from a dependency of PLP which regulates several enzymes in the body. We present the phenotypic and genotypic spectrum of (PNPO) deficiency based on a literature review (2002-2020) of reports (n = 33) of patients with confirmed PNPO deficiency (n = 87). All patients who received PLP (n = 36) showed a clinical response, with a complete dramatic PLP response with seizure cessation observed in 61% of patients. In spite of effective seizure control with PLP, approximately 56% of patients affected with PLP-dependent epilepsy suffer developmental delay/intellectual disability. There is no diagnostic biomarker, and molecular testing required for diagnosis. However, we noted that cerebrospinal fluid (CSF) PLP was low in 81%, CSF glycine was high in 80% and urinary vanillactic acid was high in 91% of the cases. We observed only a weak correlation between the severity of PNPO protein disruption and disease outcomes, indicating the importance of other factors, including seizure onset and time of therapy initiation. We found that pre-maturity, the delay in initiation of PLP therapy and early onset of seizures correlate with a poor neurocognitive outcome. Given the amenability of PNPO to PLP therapy for seizure control, early diagnosis is essential.
Collapse
Affiliation(s)
- Malak Alghamdi
- Medical Genetics Division, Department of Pediatrics, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
- Department of PediatricsKing Saud University Medical CityRiyadhSaudi Arabia
| | - Fahad A. Bashiri
- Department of PediatricsKing Saud University Medical CityRiyadhSaudi Arabia
- Neurology division, Department of Pediatrics, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | - Marwa Abdelhakim
- Computer, Electrical and Mathematical Science and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Nouran Adly
- College of Medicine Research Center, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | - Dima Z. Jamjoom
- Department of Radiology and Medical Imaging, College of MedicineKing Saud UniversityRiyadhSaudi Arabia
| | - Khalid M. Sumaily
- Clinical Biochemistry Unit, Department of Laboratory MedicineKing Saud University Medical City, King Saud UniversityRiyadhSaudi Arabia
| | - Bandar Alghanem
- Medical Research Core Facility and Platforms (MRCFP)King Abdullah International Medical, Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU‐HS), King, Abdulaziz Medical City (KAMC), NGHARiyadhSaudi Arabia
| | - Stefan T. Arold
- Computational Bioscience, Research Center (CBRC); Division of Biological and Environmental Sciences and Engineering, (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
- Centre de Biochimie Structurale, CNRS, INSERMUniversité de MontpellierMontpellierFrance
| |
Collapse
|
7
|
Chi W, Iyengar ASR, Albersen M, Bosma M, Verhoeven-Duif NM, Wu CF, Zhuang X. Pyridox (am) ine 5'-phosphate oxidase deficiency induces seizures in Drosophila melanogaster. Hum Mol Genet 2019; 28:3126-3136. [PMID: 31261385 PMCID: PMC6737294 DOI: 10.1093/hmg/ddz143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Pyridox (am) ine 5'-phosphate oxidase (PNPO) is a rate-limiting enzyme in converting dietary vitamin B6 (VB6) to pyridoxal 5'-phosphate (PLP), the biologically active form of VB6 and involved in the synthesis of neurotransmitters including γ-aminobutyric acid (GABA), dopamine, and serotonin. In humans, PNPO mutations have been increasingly identified in neonatal epileptic encephalopathy and more recently also in early-onset epilepsy. Till now, little is known about the neurobiological mechanisms underlying PNPO-deficiency-induced seizures due to the lack of animal models. Previously, we identified a c.95 C>A missense mutation in sugarlethal (sgll)-the Drosophila homolog of human PNPO (hPNPO)-and found mutant (sgll95) flies exhibiting a lethal phenotype on a diet devoid of VB6. Here, we report the establishment of both sgll95 and ubiquitous sgll knockdown (KD) flies as valid animal models of PNPO-deficiency-induced epilepsy. Both sgll95 and sgll KD flies exhibit spontaneous seizures before they die. Electrophysiological recordings reveal that seizures caused by PNPO deficiency have characteristics similar to that in flies treated with the GABA antagonist picrotoxin. Both seizures and lethality are associated with low PLP levels and can be rescued by ubiquitous expression of wild-type sgll or hPNPO, suggesting the functional conservation of the PNPO enzyme between humans and flies. Results from cell type-specific sgll KD further demonstrate that PNPO in the brain is necessary for seizure prevention and survival. Our establishment of the first animal model of PNPO deficiency will lead to better understanding of VB6 biology, the PNPO gene and its mutations discovered in patients, and can be a cost-effective system to test therapeutic strategies.
Collapse
Affiliation(s)
- Wanhao Chi
- Committee on Genetics, Genomics and Systems Biology
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| | - Atulya S R Iyengar
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Monique Albersen
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Marjolein Bosma
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, EA, The Netherlands
| | - Chun-Fang Wu
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Abend NS, Jensen FE, Inder TE, Volpe JJ. Neonatal Seizures. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:275-321.e14. [DOI: 10.1016/b978-0-323-42876-7.00012-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Xue J, Chang X, Zhang Y, Yang Z. Novel phenotypes of pyridox(am)ine-5'-phosphate oxidase deficiency and high prevalence of c.445_448del mutation in Chinese patients. Metab Brain Dis 2017; 32:1081-1087. [PMID: 28349276 DOI: 10.1007/s11011-017-9995-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/13/2017] [Indexed: 01/11/2023]
Abstract
To analyze the clinical and genetic characteristics of Chinese patients with pyridox(am)ine-5'-phosphate oxidase (PNPO) deficiency. The clinical presentations and the responses to treatments were analyzed in 4 patients. Blood and urinary metabolic screenings, electroencephalogram (EEG), brain magnetic resonance imaging (MRI) and epilepsy-related genes detection were performed in all patients. Patient 1 and 2 were identical twin brothers, who were born at 35+5 w gestation with a sign of encephalopathy. Their seizures started within the first day and could not be controlled by pyridoxine or pyridoxal-5'-phosphate (PLP) completely. Patient 3 presented seizures at 5 months, responding well to pyridoxine. Seizures in patient 4 began at 40 days after birth and were controlled by valproic acid and topiramate. EEG showed atypical hypsarrhythmia or multifocal epileptiform discharges in 3 patients, and showed normality in patient 4. MRI showed nonspecific abnormality or normality. Blood metabolic screening showed multiple amino acids level abnormalities in all cases. Urinary metabolic screening showed vanillactic acid prominently elevated in 3 patients. Genetic analysis revealed 5 mutations of PNPO, three of which were novel. The mutation c.445_448del was carried by the twins and patient 3. Assessment of psychomotor development indicated severe delay in 3 patients and borderline to mild delay in patient 3. This is the first time to report patients with PNPO deficiency diagnosed by gene analysis in China. The novel clinical characteristics and novel mutations found here expanded the phenotypes and genotypes of this disease. Further, the frameshift mutation c.445_448del might be high prevalence in PNPO deficiency in Chinese patients.
Collapse
Affiliation(s)
- Jiao Xue
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China.
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, No.1, Xi'anmen Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
10
|
Rosenberg J, Ischebeck T, Commichau FM. Vitamin B6 metabolism in microbes and approaches for fermentative production. Biotechnol Adv 2016; 35:31-40. [PMID: 27890703 DOI: 10.1016/j.biotechadv.2016.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Vitamin B6 is a designation for the six vitamers pyridoxal, pyridoxine, pyridoxamine, pyridoxal 5'-phosphate (PLP), pyridoxine 5'-phosphate, and pyridoxamine. PLP, being the most important B6 vitamer, serves as a cofactor for many proteins and enzymes. In contrast to other organisms, animals and humans have to ingest vitamin B6 with their food. Several disorders are associated with vitamin B6 deficiency. Moreover, pharmaceuticals interfere with metabolism of the cofactor, which also results in vitamin B6 deficiency. Therefore, vitamin B6 is a valuable compound for the pharmaceutical and the food industry. Although vitamin B6 is currently chemically synthesized, there is considerable interest on the industrial side to shift from chemical processes to sustainable fermentation technologies. Here, we review recent findings regarding biosynthesis and homeostasis of vitamin B6 and describe the approaches that have been made in the past to develop microbial production processes. Moreover, we will describe novel routes for vitamin B6 biosynthesis and discuss their potential for engineering bacteria that overproduce the commercially valuable substance. We also highlight bottlenecks of the vitamin B6 biosynthetic pathways and propose strategies to circumvent these limitations.
Collapse
Affiliation(s)
- Jonathan Rosenberg
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University of Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Georg-August-University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| |
Collapse
|
11
|
Ghatge MS, Karve SS, David TMS, Ahmed MH, Musayev FN, Cunningham K, Schirch V, Safo MK. Inactive mutants of human pyridoxine 5'-phosphate oxidase: a possible role for a noncatalytic pyridoxal 5'-phosphate tight binding site. FEBS Open Bio 2016; 6:398-408. [PMID: 27419045 PMCID: PMC4856418 DOI: 10.1002/2211-5463.12042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 11/11/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is a cofactor for many vitamin B6-requiring enzymes that are important for the synthesis of neurotransmitters. Pyridoxine 5'-phosphate oxidase (PNPO) is one of two enzymes that produce PLP. Some 16 known mutations in human PNPO (hPNPO), including R95C and R229W, lead to deficiency of PLP in the cell and have been shown to cause neonatal epileptic encephalopathy (NEE). This disorder has no effective treatment, and is often fatal unless treated with PLP. In this study, we show that R95C hPNPO exhibits a 15-fold reduction in affinity for the FMN cofactor, a 71-fold decrease in affinity for the substrate PNP, a 4.9-fold decrease in specific activity, and a 343-fold reduction in catalytic activity, compared to the wild-type enzyme. We have reported similar findings for R229W hPNPO. This report also shows that wild-type, R95C and R229W hPNPO bind PLP tightly at a noncatalytic site and transfer it to activate an apo-B6 enzyme into the catalytically active holo-form. We also show for the first time that hPNPO forms specific interactions with several B6 enzymes with dissociation constants ranging from 0.3 to 12.3 μm. Our results suggest a possible in vivo role for the tight binding of PLP in hPNPO, whether wild-type or variant, by protecting the very reactive PLP, and transferring this PLP directly to activate apo-B6 enzymes.
Collapse
Affiliation(s)
- Mohini S Ghatge
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Sayali S Karve
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Tanya M S David
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Faik N Musayev
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Kendra Cunningham
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Verne Schirch
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| | - Martin K Safo
- Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
12
|
Ream MA, Patel AD. Obtaining genetic testing in pediatric epilepsy. Epilepsia 2015; 56:1505-14. [DOI: 10.1111/epi.13122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Margie A. Ream
- Nationwide Children's Hospital; Columbus Ohio U.S.A
- The Ohio State University College of Medicine; Columbus Ohio U.S.A
| | - Anup D. Patel
- Nationwide Children's Hospital; Columbus Ohio U.S.A
- The Ohio State University College of Medicine; Columbus Ohio U.S.A
| |
Collapse
|
13
|
Normal Neurodevelopmental Outcomes in PNPO Deficiency: A Case Series and Literature Review. JIMD Rep 2015; 26:91-7. [PMID: 26303608 DOI: 10.1007/8904_2015_482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
Pyridox(am)ine 5'-phosphate oxidase deficiency results in an early-onset neonatal encephalopathy that can be fatal if not detected and treated early. The condition is rare, can result in preterm delivery, and can mimic hypoxic ischemic encephalopathy. Thus, suspicion of the diagnosis, appropriate investigations, and therapeutic trials with pyridoxal-5'-phosphate are often delayed. In this paper we report four cases of pyridox(am)ine 5'-phosphate oxidase deficiency, two of whom are siblings. Three were treated with pyridoxal-5'-phosphate in the first few days of life and the fourth within the first month. One of the siblings was electively treated from birth until a diagnosis was secured. Our cases demonstrate that early diagnosis and treatment can be associated with normal neurodevelopment in childhood. We suggest that a low threshold for investigating for pyridox(am)ine 5'-phosphate oxidase deficiency and electively treating with pyridoxal-5'-phosphate is considered in any neonate with encephalopathy, including those with presumed hypoxic ischemic encephalopathy in whom the degree of encephalopathy is not expected from perinatal history, cord gases and/or neuroimaging.
Collapse
|
14
|
Guerin A, Aziz AS, Mutch C, Lewis J, Go CY, Mercimek-Mahmutoglu S. Pyridox(am)ine-5-Phosphate Oxidase Deficiency Treatable Cause of Neonatal Epileptic Encephalopathy With Burst Suppression: Case Report and Review of the Literature. J Child Neurol 2015; 30:1218-25. [PMID: 25296925 DOI: 10.1177/0883073814550829] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Abstract
Pyridox(am)ine-5-phosphate oxidase deficiency is an autosomal recessive disorder of pyridoxine metabolism. Intractable neonatal epileptic encephalopathy is the classical presentation. Pyridoxal-5-phosphate or pyridoxine supplementation improves symptoms. We report a patient with myoclonic and tonic seizures at the age of 1 hour. Pyridoxal-5-phosphate was started on the first day of life and seizures stopped at the age of 3 days, but encephalopathy persisted for 4 weeks. She had normal neurodevelopmental outcome at the age of 12 months on pyridoxal-5-phosphate monotherapy. She had novel homozygous pathogenic frameshift mutation (c.448_451del;p.Pro150Argfs*27) in the PNPO gene. Long-lasting encephalopathy despite well-controlled clinical seizures does neither confirm nor exclude pyridox(am)ine-5-phosphate oxidase deficiency. Normal neurodevelopmental outcome of our patient emphasizes the importance of pyridoxal-5-phosphate treatment. Pyridox(am)ine-5-phosphate oxidase deficiency should be included in the differential diagnosis of Ohtahara syndrome and neonatal myoclonic encephalopathy as a treatable underlying cause. In addition, we reviewed the literature for pyridox(am)ine-5-phosphate oxidase deficiency and summarized herein all confirmed cases.
Collapse
Affiliation(s)
- Andrea Guerin
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Aly S Aziz
- Division of Neurology, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carly Mutch
- Occupational Therapy, Department of Rehabilitation Services, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jillian Lewis
- Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Cristina Y Go
- Division of Neurology, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, Toronto, Canada Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
15
|
PNPO Deficiency and Cirrhosis: Expanding the Clinical Phenotype? JIMD Rep 2015; 25:71-75. [PMID: 26108646 DOI: 10.1007/8904_2015_456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022] Open
Abstract
We report the case of a 4-year-old boy with pyridoxamine 5-phosphate oxidase deficiency, now the second reported case to develop hepatic cirrhosis. He presented with an encephalopathy in the first 1.5 h of life and received a first dose of PLP at 40 h of life. PNPO gene sequencing identified homozygosity for a novel variant in exon 7, c.637C>T (p.Pro213Ser). Persistent elevations in alanine transferase and aspartate transferase combined with an echogenic liver on ultrasound prompted performance of a liver biopsy which demonstrated hepatic cirrhosis. This is the second reported case of hepatic cirrhosis in PNPO deficiency. The pathogenesis is unclear but may be related to epigenetic activation of purinergic signaling in the hepatic stellate cells. PNPO deficiency may in time prove to be a suitable candidate for consideration of therapeutic orthotropic liver transplantation in select patients.
Collapse
|
16
|
Abstract
Inborn errors of metabolism (IEM) are individually rare but collectively common. Approximately 25% of IEMs can have manifestations in the neonatal period. Neonates with IEM are usually healthy at birth; however, in hours to days after birth they can develop nonspecific signs that are common to several other neonatal conditions. Therefore, maintaining a high index of suspicion is extremely important for early diagnosis and the institution of appropriate therapy, which are mandatory to prevent death and ameliorate complications from many IEMs.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatric Department, Tawam Hospital, P.O. Box 15258, Al-Ain, United Arab Emirates.
| |
Collapse
|
17
|
Levtova A, Camuzeaux S, Laberge AM, Allard P, Brunel-Guitton C, Diadori P, Rossignol E, Hyland K, Clayton PT, Mills PB, Mitchell GA. Normal Cerebrospinal Fluid Pyridoxal 5'-Phosphate Level in a PNPO-Deficient Patient with Neonatal-Onset Epileptic Encephalopathy. JIMD Rep 2015; 22:67-75. [PMID: 25762494 DOI: 10.1007/8904_2015_413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Deficiency of pyridox(am)ine 5'-phosphate oxidase (PNPO, OMIM 610090) is a treatable autosomal recessive inborn error of metabolism. Neonatal epileptic encephalopathy and a low cerebrospinal fluid (CSF) pyridoxal 5'-phosphate level are the reported hallmarks of PNPO deficiency, but its clinical and biochemical spectra are not fully known. CASE PRESENTATION A girl born at 33 3/7 weeks of gestation developed seizures in the first hours of life. Her seizures initially responded to GABAergic agonists, but she subsequently developed a severe epileptic encephalopathy. Brain MRI and infectious and metabolic evaluations at birth, including urinary alpha-aminoadipic semialdehyde (AASA), were normal. Lumbar puncture at age 3 months showed: pyridoxal 5'-phosphate, 52 nmol/L (normal, 23-64); homovanillic acid, 392 nmol/L (normal, 450-1,132); 5-hydroxyindoleacetic acid, 341 nmol/L (normal, 179-711); and 3-ortho-methyldopa, 30 nmol/L (normal, below 300). The patient was not being treated with pyridoxine nor with pyridoxal 5'-phosphate at the time of the lumbar puncture. She died at age 14 months. A sequencing panel targeting 53 epilepsy-related genes revealed a homozygous missense mutation in PNPO (c.674G>A, p.R225H). Homozygosity was confirmed by parental testing. Expression studies of mutant p.R225H PNPO revealed greatly reduced activity. In conclusion, a normal CSF level of pyridoxal 5'-phosphate does not rule out PNPO deficiency.
Collapse
Affiliation(s)
- Alina Levtova
- Divisions of Medical Genetics (AL, AML, CBG, GM) and Neurology (PD, ER), Department of Paediatrics, Biochemical Genetics Laboratory (CBG, PA), CHU Sainte-Justine and Université de Montréal, 3175 Côte-Sainte-Catherine, Montreal, QC, Canada, H3T 1C5
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van Karnebeek CDM, Jaggumantri S. Current treatment and management of pyridoxine-dependent epilepsy. Curr Treat Options Neurol 2015; 17:335. [PMID: 25639976 DOI: 10.1007/s11940-014-0335-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disorder and is considered as a prototypical form of metabolic epilepsy. Characterized by recurrent seizures in the prenatal, neonatal, and/or postnatal periods that are resistant to conventional anti-epileptic drugs, PDE is responsive to pharmacological dosages of pyridoxine. Presently, however, there are no clear dose recommendations for long-term treatment. While pyridoxine supplementation is the first line of treatment and should be initiated in all confirmed PDE patients at an early age, various other treatment strategies are emerging. These include a lysine-restricted diet and arginine fortification. These will be discussed in light of current evidence, together with recommendations for best management of patients with this rare but treatable metabolic epilepsy, and future research and collaborative efforts, including the International PDE Consortium.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, Rm K3-201, 4480 Oak Street, Vancouver, BC, V6H 3V4, Canada,
| | | |
Collapse
|
19
|
Sudarsanam A, Singh H, Wilcken B, Stormon M, Arbuckle S, Schmitt B, Clayton P, Earl J, Webster R. Cirrhosis associated with pyridoxal 5'-phosphate treatment of pyridoxamine 5'-phosphate oxidase deficiency. JIMD Rep 2014; 17:67-70. [PMID: 25256445 DOI: 10.1007/8904_2014_338] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 03/07/2023] Open
Abstract
We report the case of an 8-year-old boy with pyridoxamine 5'-phosphate oxidase (PNPO) deficiency. He developed seizures at 24 h of age that were refractory to standard anticonvulsant therapy and a trial of pyridoxine but responded to pyridoxal phosphate (PLP) at 28 days of life. Genetic testing identified compound heterozygous mutations in the PNPO gene. Management of encephalopathic episodes required escalation of PLP dose to 100 mg/kg/day by 2 years of age. Routine blood tests at this time showed significantly deranged liver function tests (LFTs). A wedge liver biopsy showed early cirrhosis with marked elevation of pyridoxal and pyridoxic acid levels in the liver sample. Despite extensive investigation, no cause other than PLP therapy could be identified for the cirrhosis. The PLP dose was weaned to 50 mg/kg/day before episodes of encephalopathy recurred. Concurrent with the reduction of his PLP dose, LFTs showed improvement. However, at 8 years of age, there is persistent evidence of hepatic fibrosis and early portal hypertension. We hypothesise that hepatic toxicity due to PLP or its degradation products is the cause of cirrhosis in this boy. Until further evidence becomes available, we would suggest that people with PNPO deficiency are treated with the minimum dose of PLP required to prevent episodes of encephalopathy.
Collapse
Affiliation(s)
- Annapurna Sudarsanam
- T.Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ware TL, Earl J, Salomons GS, Struys EA, Peters HL, Howell KB, Pitt JJ, Freeman JL. Typical and atypical phenotypes of PNPO deficiency with elevated CSF and plasma pyridoxamine on treatment. Dev Med Child Neurol 2014; 56:498-502. [PMID: 24266778 DOI: 10.1111/dmcn.12346] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 11/29/2022]
Abstract
Pyridox(am)ine phosphate oxidase (PNPO) deficiency causes severe early infantile epileptic encephalopathy and has been characterized as responding to pyridoxal-5'-phosphate but not to pyridoxine. Two males with PNPO deficiency and novel PNPO mutations are reported and their clinical, metabolic, and video-electroencephalographic (EEG) findings described. The first child showed electro-clinical responses to pyridoxine and deterioration when pyridoxine was withheld. At last review, he has well-controlled epilepsy with pyridoxal-5'-phosphate monotherapy and an autism spectrum disorder. The second child had a perinatal middle cerebral artery infarct and a myoclonic encephalopathy. He failed to respond to pyridoxine but responded well to pyridoxal-5'-phosphate. At the age of 21 months he has global developmental delay and hemiparesis but is seizure-free with pyridoxal-5'-phosphate monotherapy. Plasma and cerebrospinal fluid pyridoxamine levels were increased in both children during treatment with pyridoxine or pyridoxal-5'-phosphate. These observations indicate that differential responses to pyridoxine and pyridoxal-5'-phosphate treatment cannot be relied upon to diagnose PNPO deficiency.
Collapse
Affiliation(s)
- Tyson L Ware
- Department of Neurology, The Royal Children's Hospital, Melbourne, Vic, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Baumgart A, Spiczak SV, Verhoeven-Duif NM, Møller RS, Boor R, Muhle H, Jähn JA, Klitten LL, Hjalgrim H, Lindhout D, Stephani U, van Kempen MJA, Helbig I. Atypical vitamin B6 deficiency: a rare cause of unexplained neonatal and infantile epilepsies. J Child Neurol 2014; 29:704-7. [PMID: 24114605 DOI: 10.1177/0883073813505354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ALDH7A1 and PNPO deficiencies are rare inborn errors of vitamin B6 metabolism causing perinatal seizure disorders. The phenotypic variability, however, is broad. To assess the frequency of these deficiencies in unexplained infantile epilepsy, we screened 113 patients for mutations in both genes. We identified 1 patient with an epilepsy phenotype resembling Dravet syndrome and likely pathogenic mutations in ALDH7A1. Presenting features were highly atypical of pyridoxine-dependent epilepsy, including febrile seizures, response to anticonvulsive drugs, and periods of seizure freedom without pyridoxine treatment. "Hidden" vitamin B6 deficiencies might be rare but treatable causes of unexplained epilepsy extending beyond the classical phenotypes.
Collapse
Affiliation(s)
- Anna Baumgart
- 1Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
A nutritional conditional lethal mutant due to pyridoxine 5'-phosphate oxidase deficiency in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:1147-54. [PMID: 24739647 PMCID: PMC4065258 DOI: 10.1534/g3.114.011130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The concept of auxotrophic complementation has been proposed as an approach to identify genes in essential metabolic pathways in Drosophila melanogaster. However, it has achieved limited success to date, possibly due to the low probability of finding mutations fit with the chemically defined profile. Instead of using the chemically defined culture media lacking specific nutrients, we used bare minimum culture medium, i.e., 4% sucrose, for adult Drosophila. We identified a nutritional conditional lethal mutant and localized a c.95C > A mutation in the Drosophila pyridoxine 5'-phosphate oxidase gene [dPNPO or sugarlethal (sgll)] using meiotic recombination mapping, deficiency mapping, and whole genome sequencing. PNPO converts dietary vitamin B6 such as pyridoxine to its active form pyridoxal 5'-phosphate (PLP). The missense mutation (sgll(95)) results in the substitution of alanine to aspartate (p.Ala32Asp). The sgll(95) flies survive well on complete medium but all die within 6 d on 4% sucrose only diet, which can be rescued by pyridoxine or PLP supplement, suggesting that the mutation does not cause the complete loss of PNPO activity. The sgll knockdown further confirms its function as the Drosophila PNPO. Because better tools for positional cloning and cheaper whole genome sequencing have made the identification of point mutations much easier than before, alleviating the necessity to pinpoint specific metabolic pathways before gene identification, we propose that nutritional conditional screens based on bare minimum growth media like ours represent promising approaches for discovering important genes and mutations in metabolic pathways, thereby accelerating the establishment of in vivo models that recapitulate human metabolic diseases.
Collapse
|
23
|
Plecko B, Paul K, Mills P, Clayton P, Paschke E, Maier O, Hasselmann O, Schmiedel G, Kanz S, Connolly M, Wolf N, Struys E, Stockler S, Abela L, Hofer D. Pyridoxine responsiveness in novel mutations of the PNPO gene. Neurology 2014; 82:1425-33. [PMID: 24658933 DOI: 10.1212/wnl.0000000000000344] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether patients with pyridoxine-responsive seizures but normal biomarkers for antiquitin deficiency and normal sequencing of the ALDH7A1 gene may have PNPO mutations. METHODS We sequenced the PNPO gene in 31 patients who fulfilled the above-mentioned criteria. RESULTS We were able to identify 11 patients carrying 3 novel mutations of the PNPO gene. In 6 families, a homozygous missense mutation p.Arg225His in exon 7 was identified, while 1 family was compound heterozygous for a novel missense mutation p.Arg141Cys in exon 5 and a deletion c.279_290del in exon 3. Pathogenicity of the respective mutations was proven by absence in 100 control alleles and expression studies in CHO-K1 cell lines. The response to pyridoxine was prompt in 4, delayed in 2, on EEG only in 2, and initially absent in another 2 patients. Two unrelated patients homozygous for the p.Arg225His mutation experienced status epilepticus when switched to pyridoxal 5'-phosphate (PLP). CONCLUSIONS This study challenges the paradigm of exclusive PLP responsiveness in patients with pyridoxal 5'-phosphate oxidase deficiency and underlines the importance of consecutive testing of pyridoxine and PLP in neonates with antiepileptic drug-resistant seizures. Patients with pyridoxine response but normal biomarkers for antiquitin deficiency should undergo PNPO mutation analysis.
Collapse
Affiliation(s)
- Barbara Plecko
- From the Department of Pediatrics (B.P., L.A.), Division of Child Neurology, University Hospital Zurich, Switzerland; the Department of Pediatrics (B.P.), Division of Neurology and Inborn Errors of Metabolism, Medical University Graz, Austria; radiz-"Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases University of Zurich" (B.P., L.A.); CRC Clinical Research Center (B.P.), University Childrens' Hospital Zurich, Switzerland; the Laboratory of Metabolic Diseases (K.P., E.P., D.H.), Department of Pediatrics, University Hospital Graz, Austria; UCL Institute of Child Health (P.M., P.C.), Clinical and Molecular Genetics Unit, London, UK; Childrens Hospital St. Gallen (O.M., O.H.), Switzerland; the Department of Pediatrics (G.H.), Klinikum Esslingen; the Department of Pediatrics (S.K.), St. Marien Hospital, Landshut, Germany; the Division of Child Neurology (M.C.) and Division of Biochemical Diseases (S.S.), Department of Pediatrics, University of British Columbia, Vancouver, Canada; the Department of Pediatrics, Division of Child Neurology (N.W.), VU University Medical Center and Neuroscience Campus Amsterdam; and the Department of Clinical Chemistry (E.S.), Vrije Universiteit Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mills PB, Camuzeaux SSM, Footitt EJ, Mills KA, Gissen P, Fisher L, Das KB, Varadkar SM, Zuberi S, McWilliam R, Stödberg T, Plecko B, Baumgartner MR, Maier O, Calvert S, Riney K, Wolf NI, Livingston JH, Bala P, Morel CF, Feillet F, Raimondi F, Del Giudice E, Chong WK, Pitt M, Clayton PT. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 2014; 137:1350-60. [PMID: 24645144 PMCID: PMC3999720 DOI: 10.1093/brain/awu051] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The first described patients with pyridox(am)ine 5'-phosphate oxidase deficiency all had neonatal onset seizures that did not respond to treatment with pyridoxine but responded to treatment with pyridoxal 5'-phosphate. Our data suggest, however, that the clinical spectrum of pyridox(am)ine 5'-phosphate oxidase deficiency is much broader than has been reported in the literature. Sequencing of the PNPO gene was undertaken for a cohort of 82 individuals who had shown a reduction in frequency and severity of seizures in response to pyridoxine or pyridoxal 5'-phosphate. Novel sequence changes were studied using a new cell-free expression system and a mass spectrometry-based assay for pyridoxamine phosphate oxidase. Three groups of patients with PNPO mutations that had reduced enzyme activity were identified: (i) patients with neonatal onset seizures responding to pyridoxal 5'-phosphate (n = 6); (ii) a patient with infantile spasms (onset 5 months) responsive to pyridoxal 5'-phosphate (n = 1); and (iii) patients with seizures starting under 3 months of age responding to pyridoxine (n = 8). Data suggest that certain genotypes (R225H/C and D33V) are more likely to result in seizures that to respond to treatment with pyridoxine. Other mutations seem to be associated with infertility, miscarriage and prematurity. However, the situation is clearly complex with the same combination of mutations being seen in patients who responded and did not respond to pyridoxine. It is possible that pyridoxine responsiveness in PNPO deficiency is affected by prematurity and age at the time of the therapeutic trial. Other additional factors that are likely to influence treatment response and outcome include riboflavin status and how well the foetus has been supplied with vitamin B6 by the mother. For some patients there was a worsening of symptoms on changing from pyridoxine to pyridoxal 5'-phosphate. Many of the mutations in PNPO affected residues involved in binding flavin mononucleotide or pyridoxal 5'-phosphate and many of them showed residual enzyme activity. One sequence change (R116Q), predicted to affect flavin mononucleotide binding and binding of the two PNPO dimers, and with high residual activity was found in Groups (ii) and (iii). This sequence change has been reported in the 1000 Genomes project suggesting it could be a polymorphism but alternatively it could be a common mutation, perhaps responsible for the susceptibility locus for genetic generalized epilepsy on 17q21.32 (close to rs72823592). We believe the reduction in PNPO activity and B6-responsive epilepsy in the patients reported here indicates that it contributes to the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Philippa B Mills
- 1 Clinical and Molecular Genetics Unit, UCL Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Profiling of hepatocellular carcinoma cell cycle regulating genes targeted by calycosin. BIOMED RESEARCH INTERNATIONAL 2013; 2013:317926. [PMID: 24455688 PMCID: PMC3884961 DOI: 10.1155/2013/317926] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 12/02/2013] [Indexed: 02/06/2023]
Abstract
We cocultured calycosin with human hepatocellular carcinoma cell line (BEL-7402) to investigate the effect on cell proliferation. Calycosin can markedly block the cell growth in G1 phase (P < 0.01) on the IC50 concentration. There were seventeen genes involved in cell-cycle regulation showing differentially expressed in treated cells detected by gene chip. Eight genes were upregulated and nine genes were downregulated. Downregulated TFDP-1, CDKN2D, and SPK2 and upregulated CDC2 and CCNB1 might affect cell cycle of tumor cells. Furthermore, we checked the transcription pattern using 2D gel method to find different expression of proteins in human hepatocellular carcinoma cells after exposure to calycosin. Fourteen proteins were identified by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Twelve proteins expression were increased such as transgelin 2, pyridoxine 5′-phosphate, stress-induced-phosphoprotein 1, peroxiredoxin 1, endoplasmic reticulum protein 29, and phosphoglycerate mutase 1. Only thioredoxin peroxidase and high-mobility group box1 proteins' expression decreased. Both genes and proteins changes might be relate to the mechanism of antitumor effect under treatment of calycosin. In conclusion, calycosin has a potential effect to inhibit the BEL-7402 cell growth by inhibiting some oncogene expression and increasing anticancer genes expression, what is more, by blocking cell cycle.
Collapse
|
26
|
Tabarki B, Thabet F. [Vitamin-responsive epilepsies: an update]. Arch Pediatr 2013; 20:1236-1241. [PMID: 24080039 DOI: 10.1016/j.arcped.2013.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/01/2013] [Accepted: 08/12/2013] [Indexed: 11/22/2022]
Abstract
Inborn error of metabolism may produce a complex clinical picture in which epilepsy is only one of the various neurologic manifestations including developmental delay/regression, mental retardation, and movement disorders. However, metabolic epilepsies may dominate the clinical presentation. A specific diagnosis of metabolic disorders in epileptic patients may provide the possibility of specific treatments that can improve seizures. In a few metabolic diseases such as vitamin-responsive epilepsies, epilepsy responds to specific treatments based on supplementation of cofactors. Certain rare vitamin-responsive inborn errors of metabolism may present as early encephalopathy with anticonvulsant-resistant seizures. These include pyridoxine-dependent seizures, pyridoxal-phosphate-dependent seizures, folinic acid-responsive seizures, and biotinidase deficiency. This review discusses our current understanding of these vitamin-responsive epilepsies.
Collapse
Affiliation(s)
- B Tabarki
- Service de neuropédiatrie, département de pédiatrie, hôpital Militaire, P.O Box 7897, Riyadh 11159, Arabie saoudite.
| | - F Thabet
- Service de réanimation pédiatrique, département de pédiatrie, hôpital Militaire, Riyadh, Arabie saoudite
| |
Collapse
|
27
|
Papetti L, Parisi P, Leuzzi V, Nardecchia F, Nicita F, Ursitti F, Marra F, Paolino MC, Spalice A. Metabolic epilepsy: an update. Brain Dev 2013; 35:827-41. [PMID: 23273990 DOI: 10.1016/j.braindev.2012.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/23/2012] [Accepted: 11/25/2012] [Indexed: 10/27/2022]
Abstract
Inborn errors of metabolism comprise a large class of genetic diseases involving disorders of metabolism. Presentation is usually in the neonatal period or infancy but can occur at any time, even in adulthood. Seizures are frequent symptom in inborn errors of metabolism, with no specific seizure types or EEG signatures. The diagnosis of a genetic defect or an inborn error of metabolism often results in requests for a vast array of biochemical and molecular tests leading to an expensive workup. However a specific diagnosis of metabolic disorders in epileptic patients may provide the possibility of specific treatments that can improve seizures. In a few metabolic diseases, epilepsy responds to specific treatments based on diet or supplementation of cofactors (vitamin-responsive epilepsies), but for most of them specific treatment is unfortunately not available, and conventional antiepileptic drugs must be used, often with no satisfactory success. In this review we present an overview of metabolic epilepsies based on various criteria such as treatability, age of onset, seizure type, and pathogenetic background.
Collapse
Affiliation(s)
- Laura Papetti
- Department of Pediatrics, Child Neurology Division, Sapienza University of Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vitamin-responsive epileptic encephalopathies in children. EPILEPSY RESEARCH AND TREATMENT 2013; 2013:510529. [PMID: 23984056 PMCID: PMC3745849 DOI: 10.1155/2013/510529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/18/2013] [Indexed: 01/12/2023]
Abstract
Untreated epileptic encephalopathies in children may potentially have disastrous outcomes. Treatment with antiepileptic drugs (AEDs) often may not control the seizures, and even if they do, this measure is only symptomatic and not specific. It is especially valuable to identify potential underlying conditions that have specific treatments. Only a few conditions have definitive treatments that can potentially modify the natural course of disease. In this paper, we discuss the few such conditions that are responsive to vitamin or vitamin derivatives.
Collapse
|
29
|
Dhamija R, Patterson MC, Wirrell EC. Epilepsy in children--when should we think neurometabolic disease? J Child Neurol 2012; 27:663-71. [PMID: 22378665 DOI: 10.1177/0883073811435829] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seizures are often the first manifestation of central nervous system dysfunction and are common in many inborn errors of metabolism, especially in neonates, infants, and children. A high index of suspicion is required to diagnose inborn errors of metabolism as the cause of seizures. It is also important to recognize these metabolic disorders early, as specific disease-modifying treatments are available for some with favorable long-term outcomes. This review discusses the classification of metabolic disorders as a cause of seizures based on pathogenesis and age and proposes a tiered approach for cost-effective diagnosis of metabolic disorders.
Collapse
Affiliation(s)
- Radhika Dhamija
- Division of Child and Adolescent Neurology, Mayo Clinic Children's Center, Rochester, MN 55905, USA
| | | | | |
Collapse
|
30
|
Noh GJ, Jane Tavyev Asher Y, Graham JM. Clinical review of genetic epileptic encephalopathies. Eur J Med Genet 2012; 55:281-98. [PMID: 22342633 DOI: 10.1016/j.ejmg.2011.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/27/2011] [Indexed: 11/29/2022]
Abstract
Seizures are a frequently encountered finding in patients seen for clinical genetics evaluations. The differential diagnosis for the cause of seizures is quite diverse and complex, and more than half of all epilepsies have been attributed to a genetic cause. Given the complexity of such evaluations, we highlight the more common causes of genetic epileptic encephalopathies and emphasize the usefulness of recent technological advances. The purpose of this review is to serve as a practical guide for clinical geneticists in the evaluation and counseling of patients with genetic epileptic encephalopathies. Common syndromes will be discussed, in addition to specific seizure phenotypes, many of which are refractory to anti-epileptic agents. Divided by etiology, we overview the more common causes of infantile epileptic encephalopathies, channelopathies, syndromic, metabolic, and chromosomal entities. For each condition, we will outline the diagnostic evaluation and discuss effective treatment strategies that should be considered.
Collapse
Affiliation(s)
- Grace J Noh
- Clinical Genetics and Dysmorphology, Medical Genetics Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
31
|
Ficicioglu C, Bearden D. Isolated neonatal seizures: when to suspect inborn errors of metabolism. Pediatr Neurol 2011; 45:283-91. [PMID: 22000307 DOI: 10.1016/j.pediatrneurol.2011.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 07/25/2011] [Indexed: 10/16/2022]
Abstract
Neonatal seizures are common, and often comprise the first clinical indicator of central nervous system dysfunction. Although most neonatal seizures are secondary to processes such as hypoxic-ischemic injury, infection, or cortical malformations (which are readily identifiable through routine testing and imaging), seizures secondary to inborn errors of metabolism can be much more difficult to diagnose, and thus a high index of suspicion is required. The early diagnosis of inborn errors of metabolism is crucial, considering that many can receive effective treatment (e.g., dietary supplementation or restriction) with favorable long-term outcomes. This review emphasizes the importance of considering inborn errors of metabolism in the differential diagnosis of neonatal seizures, discusses red flags for inborn errors of metabolism as a cause of neonatal seizures, and provides an overview of diagnoses and treatments of inborn errors of metabolism most commonly associated with neonatal seizures.
Collapse
Affiliation(s)
- Can Ficicioglu
- Department of Pediatrics, Children’s Hospital of Philadelphia, 3501 Civic Center Boulevard, Colket (CTRB), 9th Floor, Number 54, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
32
|
di Salvo ML, Contestabile R, Safo MK. Vitamin B6 salvage enzymes: Mechanism, structure and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1597-608. [DOI: 10.1016/j.bbapap.2010.12.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
|
33
|
Shorvon S, Ferlisi M. The treatment of super-refractory status epilepticus: a critical review of available therapies and a clinical treatment protocol. Brain 2011; 134:2802-18. [DOI: 10.1093/brain/awr215] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
34
|
Stockler S, Plecko B, Gospe SM, Coulter-Mackie M, Connolly M, van Karnebeek C, Mercimek-Mahmutoglu S, Hartmann H, Scharer G, Struijs E, Tein I, Jakobs C, Clayton P, Van Hove JLK. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 2011; 104:48-60. [PMID: 21704546 DOI: 10.1016/j.ymgme.2011.05.014] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022]
Abstract
Antiquitin (ATQ) deficiency is the main cause of pyridoxine dependent epilepsy characterized by early onset epileptic encephalopathy responsive to large dosages of pyridoxine. Despite seizure control most patients have intellectual disability. Folinic acid responsive seizures (FARS) are genetically identical to ATQ deficiency. ATQ functions as an aldehyde dehydrogenase (ALDH7A1) in the lysine degradation pathway. Its deficiency results in accumulation of α-aminoadipic semialdehyde (AASA), piperideine-6-carboxylate (P6C) and pipecolic acid, which serve as diagnostic markers in urine, plasma, and CSF. To interrupt seizures a dose of 100 mg of pyridoxine-HCl is given intravenously, or orally/enterally with 30 mg/kg/day. First administration may result in respiratory arrest in responders, and thus treatment should be performed with support of respiratory management. To make sure that late and masked response is not missed, treatment with oral/enteral pyridoxine should be continued until ATQ deficiency is excluded by negative biochemical or genetic testing. Long-term treatment dosages vary between 15 and 30 mg/kg/day in infants or up to 200 mg/day in neonates, and 500 mg/day in adults. Oral or enteral pyridoxal phosphate (PLP), up to 30 mg/kg/day can be given alternatively. Prenatal treatment with maternal pyridoxine supplementation possibly improves outcome. PDE is an organic aciduria caused by a deficiency in the catabolic breakdown of lysine. A lysine restricted diet might address the potential toxicity of accumulating αAASA, P6C and pipecolic acid. A multicenter study on long term outcomes is needed to document potential benefits of this additional treatment. The differential diagnosis of pyridoxine or PLP responsive seizure disorders includes PLP-responsive epileptic encephalopathy due to PNPO deficiency, neonatal/infantile hypophosphatasia (TNSALP deficiency), familial hyperphosphatasia (PIGV deficiency), as well as yet unidentified conditions and nutritional vitamin B6 deficiency. Commencing treatment with PLP will not delay treatment in patients with pyridox(am)ine phosphate oxidase (PNPO) deficiency who are responsive to PLP only.
Collapse
Affiliation(s)
- Sylvia Stockler
- Division of Biochemical Diseases, British Columbia Children's Hospital, University of British Columbia, 4480 Oak Street, Vancouver BC, Canada V6H 3V4.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Veerapandiyan A, Winchester SA, Gallentine WB, Smith EC, Kansagra S, Hyland K, Mikati MA. Electroencephalographic and seizure manifestations of pyridoxal 5'-phosphate-dependent epilepsy. Epilepsy Behav 2011; 20:494-501. [PMID: 21292558 DOI: 10.1016/j.yebeh.2010.12.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/23/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
Abstract
We describe the electroencephalographic and clinical seizure manifestations of pyridoxal 5'-phosphate-dependent epilepsy (PLP-DE) in two patients [diagnosis confirmed by low cerebrospinal fluid (CSF) PLP, complete resolution of previously intractable seizures with PLP supplementation, negative pyridoxine-dependent epilepsy CSF biomarkers, and/or positive disease causing pyridox(am)ine 5'-phosphate oxidase gene mutation] along with a comprehensive review of the literature. One patient presented with neonatal tonic status epilepticus with subsequent generalized tonic-clonic seizures, and the second, with refractory complex partial seizures starting at 2 years of age. The pretreatment EEG revealed, interictally, burst suppression, multifocal independent sharp waves, and electrical status epilepticus in sleep. Ictally and interictally, it revealed runs of unilateral spike/slow waves. Previously reported features include burst suppression, myoclonus, tonic seizures, clonic seizures, and spasms. In the appropriate clinical scenario, the aforementioned features should raise the possibility of PLP-DE and appropriate treatment should be initiated. The first late-onset case (at 2 years) of PLP-DE is reported.
Collapse
|
36
|
Abstract
Epileptic encephalopathies presenting in early life present a diagnostic and therapeutic challenge. These disorders present with multiple seizure types that are treatment resistant and associated with significant abnormalities on electroencephalographic studies. The underlying etiology in many cases may be related to an inborn error of metabolism. Efforts to establish the specific diagnosis of a genetic defect or an inborn error of metabolism often results in requests for a vast array of biochemical and molecular tests leading to an expensive workup. In this review, we present the clinician with information that provides a rationale for a selective and nuanced approach to biochemical assays, and initial treatment strategies while waiting for a specific diagnosis to be established. A careful consideration of the presentation, identification of potentially treatable conditions, and consultation with the biochemical genetics laboratory can lead to a greater measure of success while limiting cost overruns. Such a targeted approach is hoped will lead to an early diagnosis and appropriate interventions.
Collapse
|
37
|
Antenatal treatment in two Dutch families with pyridoxine-dependent seizures. Eur J Pediatr 2010; 169:297-303. [PMID: 19588165 DOI: 10.1007/s00431-009-1020-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
Incidental reports suggest that antenatal treatment of pyridoxine dependent seizures (PDS) may improve neurodevelopmental outcome of affected patients. Two families with PDS are reported, both with two affected siblings. Antenatal treatment with pyridoxine was instituted during the second pregnancy in each family (50 and 60 mg daily from 3 and 10 weeks of gestation, respectively). Perinatal characteristics and neurodevelopmental outcome at 4 (Family A) and 12 (Family B) years of age were compared between the untreated and treated child within each family. Meconium-stained amniotic fluid was present in both first pregnancies and abnormal foetal movements were noticed in one. In the treated infants, pregnancy and birth were uncomplicated. In family A, postnatal pyridoxine supplementation prevented neonatal seizures. Both children in family A were hypotonic and started walking after 2 years of age; both had white matter changes on MRI, and the first child was treated for squint. IQ was 73 and 98 in the antenatally untreated and treated child, respectively. The second child in family B developed seizures on the seventh day, because pyridoxine maintenance therapy had not been instituted after birth. Seizures responded rapidly to pyridoxine supplementation. MRI showed large ventricles and a mega cisterna magna. IQ was 80 and 106 in the antenatally untreated and treated child respectively. Both children had normal motor development. These results suggest that antenatal pyridoxine supplementation may be effective in preventing intrauterine seizures, decreasing the risk of complicated birth and improving neurodevelopmental outcome in PDS.
Collapse
|
38
|
Abstract
Products prepared from Ginkgo biloba are top-selling phytopharmaceuticals especially in Europe and major botanical dietary supplements in the United States. In European medicine, G. biloba medications are used to improve memory, to treat neuronal disorders such as tinnitus or intermittent claudication, and to improve brain metabolism and peripheral blood flow. The whole array of indications is reflected by a number of defined natural product constituents in G. biloba. The most well-known ones are flavonoids and terpene lactones, but they also include allergenic and toxic compounds such as ginkgotoxin (1). Consequently, there are reports attributing beneficial as well as adverse effects to G. biloba products. The present paper summarizes recent experiences with G. biloba and its derived products and explains why their restricted use is recommended.
Collapse
Affiliation(s)
- Eckhard Leistner
- Institut for Pharmazeutische Biologie der Rheinischen Friedrich Wilhelms-Universität Bonn, Nussallee 6, D 53115 Bonn, Germany.
| | | |
Collapse
|
39
|
Musayev FN, Di Salvo ML, Saavedra MA, Contestabile R, Ghatge MS, Haynes A, Schirch V, Safo MK. Molecular basis of reduced pyridoxine 5'-phosphate oxidase catalytic activity in neonatal epileptic encephalopathy disorder. J Biol Chem 2009; 284:30949-56. [PMID: 19759001 DOI: 10.1074/jbc.m109.038372] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in pyridoxine 5'-phosphate oxidase are known to cause neonatal epileptic encephalopathy. This disorder has no cure or effective treatment and is often fatal. Pyridoxine 5'-phosphate oxidase catalyzes the oxidation of pyridoxine 5'-phosphate to pyridoxal 5'-phosphate, the active cofactor form of vitamin B(6) required by more than 140 different catalytic activities, including enzymes involved in amino acid metabolism and biosynthesis of neurotransmitters. Our aim is to elucidate the mechanism by which a homozygous missense mutation (R229W) in the oxidase, linked to neonatal epileptic encephalopathy, leads to reduced oxidase activity. The R229W variant is approximately 850-fold less efficient than the wild-type enzyme due to an approximately 192-fold decrease in pyridoxine 5'-phosphate affinity and an approximately 4.5-fold decrease in catalytic activity. There is also an approximately 50-fold reduction in the affinity of the R229W variant for the FMN cofactor. A 2.5 A crystal structure of the R229W variant shows that the substitution of Arg-229 at the FMN binding site has led to a loss of hydrogen-bond and/or salt-bridge interactions between FMN and Arg-229 and Ser-175. Additionally, the mutation has led to an alteration of the configuration of a beta-strand-loop-beta-strand structure at the active site, resulting in loss of two critical hydrogen-bond interactions involving residues His-227 and Arg-225, which are important for substrate binding and orientation for catalysis. These results provide a molecular basis for the phenotype associated with the R229W mutation, as well as providing a foundation for understanding the pathophysiological consequences of pyridoxine 5'-phosphate oxidase mutations.
Collapse
Affiliation(s)
- Faik N Musayev
- Department of Medicinal Chemistry, School of Pharmacy, and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Vitamins in the monkey brain: An immunocytochemical study. J Chem Neuroanat 2009; 38:1-8. [PMID: 19477264 DOI: 10.1016/j.jchemneu.2009.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 11/21/2022]
Abstract
Using highly specific antisera directed against vitamins, the distribution of pyridoxal-, pyridoxine-, vitamin C- and nicotinamide-immunoreactive structures in the monkey (Macaca fascicularis) brain was studied. Neither immunoreactive structures containing pyridoxine or nicotinamide, nor immunoreactive fibers containing vitamin C were found in the monkey brain. However, this work reports the first visualization and the morphological characteristics of pyridoxal- and vitamin C-immunoreactive cell bodies in the mammalian central nervous system using an indirect immunoperoxidase technique. A high density of pyridoxal-immunoreactive cell bodies was found in the paraventricular hypothalamic nucleus and in the supraoptic nucleus and a low density of the same was observed in the periventricular hypothalamic region, whereas a moderate density of vitamin C-immunoreactive cell bodies was observed in the somatosensorial cortex (precentral gyrus). Immunoreactive fibers containing pyridoxal were only visualized in the anterior commissure. The restricted distribution of pyridoxal and vitamin C in the monkey brain suggests that both vitamins could be involved in very specific physiological mechanisms.
Collapse
|
41
|
Khayat M, Korman SH, Frankel P, Weintraub Z, Hershckowitz S, Sheffer VF, Elisha MB, Wevers RA, Falik-Zaccai TC. PNPO deficiency: an under diagnosed inborn error of pyridoxine metabolism. Mol Genet Metab 2008; 94:431-434. [PMID: 18485777 DOI: 10.1016/j.ymgme.2008.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/14/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
The rare autosomal recessive disorder pyridoxine 5'-phosphate oxidase (PNPO) deficiency is a recently described cause of neonatal and infantile seizures. Clinical evaluation, and biochemical and genetic testing, were performed on a neonate with intractable seizures who did not respond to anticonvulsant drugs and pyridoxine. Sequencing of the PNPO gene revealed a novel homozygous c.284G>A transition in exon 3, resulting in arginine to histidine substitution and reduced activity of the PNPO mutant to 18% relative to the wild type. This finding enabled molecular prenatal diagnosis in a subsequent pregnancy, accurate genetic counseling in the large inbred family, and population screening.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Brain Diseases, Metabolic, Inborn/diagnosis
- Brain Diseases, Metabolic, Inborn/enzymology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- CHO Cells
- Codon, Nonsense
- Consanguinity
- Cricetinae
- Cricetulus
- DNA Mutational Analysis
- Exons
- Female
- Gene Expression
- Genetic Testing
- Humans
- Infant, Newborn
- Male
- Mutagenesis, Site-Directed
- Pedigree
- Point Mutation
- Prenatal Diagnosis
- Pyridoxaminephosphate Oxidase/deficiency
- Pyridoxaminephosphate Oxidase/genetics
- Pyridoxine/metabolism
- Seizures/diagnosis
- Seizures/enzymology
- Seizures/genetics
- Seizures/metabolism
Collapse
Affiliation(s)
- Morad Khayat
- Institute of Medical Genetics, Western Galilee Hospital, Nahariya, P.O. Box 21, 22100 Nahariya, Israel
| | - Stanley H Korman
- Metabolic Diseases Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Pnina Frankel
- Institute of Medical Genetics, Western Galilee Hospital, Nahariya, P.O. Box 21, 22100 Nahariya, Israel
| | - Zalman Weintraub
- Department of Neonatology, Western Galilee Hospital, Nahariya, Israel; Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | | | | | | | - Ronald A Wevers
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Tzipora C Falik-Zaccai
- Institute of Medical Genetics, Western Galilee Hospital, Nahariya, P.O. Box 21, 22100 Nahariya, Israel; Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|