1
|
Tasaki D, Tsuruda K, Sun S, Tsumura Y, Asano S, Suzuki Y, Tsujimoto S, Miura D, Sato H. A double-blind, placebo-controlled, randomized multiple dose phase 1b trial of a CDK4/6 inhibitor, TCK-276, in patients with active rheumatoid arthritis. Rheumatology (Oxford) 2025; 64:1036-1044. [PMID: 39002122 DOI: 10.1093/rheumatology/keae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/09/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the safety, tolerability, pharmacokinetics and efficacy (as an exploratory endpoint) of TCK-276, a novel CDK4/6 inhibitor, after multiple oral doses for 7 days in patients with active RA. METHODS This multicentre, randomized, placebo-controlled, dose-ascending, double-blind, phase 1b, multiple-dose study included 32 patients with active RA in four cohorts of 8 patients (6 active and 2 matching placebo), each receiving an oral dose of TCK-276 or matching placebo for 7 days (once daily). The doses of TCK-276 were 10, 25, 75 and 175 mg/day. Safety and pharmacokinetic endpoints, and exploratory disease activity parameters for RA were assessed. RESULTS There were no deaths, serious adverse events, notable clinically meaningful laboratory findings (including haematological changes), clinically meaningful vital sign changes or clinically meaningful ECG or cardiac telemetry changes. TCK-276 was rapidly absorbed and the half-life time ranged approximately from 6 to 12 h. No obvious accumulation was observed, and the increase in TCK-276 exposure was dose proportional. At day 7, DAS28-CRP responses (EULAR good or moderate responses) were observed in 40%, 80% and 66.7% at 25, 75 and 175 mg/day TCK-276, respectively, vs 12.5% in placebo; ACR20 responses were 33.3%, 60% and 50%, respectively, vs none in placebo. CONCLUSION TCK-276 (≤175 mg) was well tolerated with no clinically meaningful safety signals in patients with active RA. Together with the preliminary efficacy (≥25 mg/day), these data warrant further study of TCK-276 for the treatment of active RA. TRIAL REGISTRATION ClinicalTrails.gov, NCT05437419.
Collapse
Affiliation(s)
- Daisuke Tasaki
- Global Development Department, Teijin Pharma Limited, Tokyo, Japan
| | | | - Shosho Sun
- Global Development Department, Teijin Pharma Limited, Tokyo, Japan
| | | | - Satoshi Asano
- Teijin Institute for BioMedical Research, Translational Science Research Department, Teijin Pharma Limited, Tokyo, Japan
| | - Yuki Suzuki
- Teijin Institute for BioMedical Research, Translational Science Research Department, Teijin Pharma Limited, Tokyo, Japan
| | - Shunsuke Tsujimoto
- Teijin Institute for BioMedical Research, Translational Science Research Department, Teijin Pharma Limited, Tokyo, Japan
| | - Daishiro Miura
- Global Development Department, Teijin Pharma Limited, Tokyo, Japan
| | - Hiroaki Sato
- Global Development Department, Teijin Pharma Limited, Tokyo, Japan
| |
Collapse
|
2
|
Hosoya T, Saito T, Yasuda S. Cyclin dependent kinase inhibitor: a long-awaited, late-coming, novel class agent in rheumatoid arthritis. Rheumatology (Oxford) 2025; 64:916-918. [PMID: 39499192 DOI: 10.1093/rheumatology/keae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Affiliation(s)
- Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Saito
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
3
|
Komatsu R, Fujii R, Ogasawara T, Suzuki-Takahashi Y, Chen S, Sugishita Y, Niki H, Yudoh K. CDK6-Dependent, CDK4-Independent Synovial Hyperplasia in Arthritic Mice and Tumor Necrosis Factor-α-Induced Proliferation of Synovial Fibroblasts. Int J Mol Sci 2025; 26:1151. [PMID: 39940918 PMCID: PMC11817658 DOI: 10.3390/ijms26031151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Palbociclib, a dual CDK4/6 kinase inhibitor used for breast cancer, has been explored as a treatment option for rheumatoid arthritis (RA). Preclinical studies have reported palbociclib-induced myelosuppression, but no such effects have been observed in Cdk4 or Cdk6 single-deficient mice. Synoviocyte proliferation-associated in collagen-induced arthritis 1/serum amyloid A-like 1 (SPACIA1/SAAL1) is involved in G1 phase progression. Given that SPACIA1/SAAL1 upregulates CDK6 (but not CDK4) expression, we aimed to determine whether suppressing CDK6 expression alone could prevent synovial hyperplasia without myelosuppression. The effects of CDK6 expression on TNF-α-induced rheumatoid arthritis synovial fibroblast (RASF) proliferation and synovial hyperplasia in collagen-induced arthritis (CIA) mice were investigated by modulating the transcriptional level with a CDK6 expression inhibitor (indole-3-carbinol), CDK6 small interfering RNA (siRNA), and Cdk6-deficient mice. Indole-3-carbinol or CDK6 siRNA inhibited TNF-α-induced RASF proliferation without suppressing CDK4 expression and reduced retinoblastoma protein phosphorylation. In CIA mice, indole-3-carbinol did not cause myelosuppression, considerably delayed CIA onset and progression, and reduced arthritis severity. Cdk6-deficient mice showed similar improvements in CIA pathogenesis but had lower serum anti-type II collagen IgG levels. Notably, synovial hyperplasia was not observed in Cdk6-deficient mice. CIA-synovial hyperplasia depends on CDK6, but not CDK4, expression.
Collapse
Affiliation(s)
- Rie Komatsu
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| | - Ryoji Fujii
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| | - Toru Ogasawara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Yuki Suzuki-Takahashi
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| | - Sandy Chen
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| | - Yodo Sugishita
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| | - Hisateru Niki
- Department of Orthopedic Surgery, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan;
| | - Kazuo Yudoh
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki 216-8512, Kanagawa, Japan; (R.K.); (Y.S.-T.); (S.C.); (Y.S.); (K.Y.)
| |
Collapse
|
4
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
5
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
6
|
Tao SS, Fang X, Xu LZ, Zhang RD, Luo QQ, Tang J, Dai XF, Xu SZ, Yang XK, Pana HF. Association of gene polymorphisms and the decreased expression of long non-coding RNA LOC553103 with rheumatoid arthritis. Postgrad Med J 2024:qgae055. [PMID: 38656404 DOI: 10.1093/postmj/qgae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are involved in many key bioprocesses, including the occurrence and development of rheumatoid arthritis (RA). We aimed to analyze the association of genetic variants of long non-coding RNA LOC553103 and its peripheral blood mononuclear cells (PBMC) expression with RA. METHODS We enrolled 457 RA patients and 551 healthy controls and conducted a case-control study to analyze the relationship between LOC553103 gene rs272879 and the susceptibility of RA by TaqMan single nucleotide polymorphism genotyping. Among them, we sampled 92 cases and 92 controls, respectively, to detect the PBMC level of LOC553103 using quantitative real-time polymerase chain reaction technology. We explored the association between LOC553103 rs272879 and its PBMC expression levels in 71 RA patients. Mann-Whitney, Chi-square, and Spearman correlation analysis were used for statistical analysis and P-value <.05 was considered statistically significant. RESULTS The genotype frequency of LOC553103 rs272879 CC was increased, and CG was decreased in RA patients compared to the control group (χ2 = 6.772, P = .034). The LOC553103 expression level in PBMC of RA patients was downregulated compared to healthy control (Z = -4.497, P < .001). Moreover, negative correlations were observed between the PBMC level of LOC553103 and erythrocyte sedimentation rate (rs = -0.262, P = .018), white blood cell count (rs = -0.382, P = .004), platelet (rs = -0.293, P = .030), and disease activity score in 28 joints (rs = -0.271, P = .016) in RA patients. CONCLUSIONS This study provides the first evidence supporting an association between LOC553103 gene polymorphisms and susceptibility of RA and a relationship of PBMC level of LOC553103 with clinical manifestations and laboratory indicators of RA patients.
Collapse
Affiliation(s)
- Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Preventive Medicine Experimental Teaching Center, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xi Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Liang-Zi Xu
- Department of Clinical Medicine, First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qing-Qing Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jian Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiao-Fan Dai
- Department of Public Affairs Administration, School of Health Service Management, Anhui Medical University, Hefei, Anhui Province 230032, China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Hai-Feng Pana
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
7
|
Pan Q, Yang H, Zhou Z, Li M, Jiang X, Li F, Luo Y, Li M. [ 68 Ga]Ga-FAPI-04 PET/CT may be a predictor for early treatment response in rheumatoid arthritis. EJNMMI Res 2024; 14:2. [PMID: 38175339 PMCID: PMC10766931 DOI: 10.1186/s13550-023-01064-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The identification of biomarkers predicting the treatment response of rheumatoid arthritis (RA) is important. [68 Ga]Ga-FAPI-04 showed markedly increased uptake in the joints of patients with RA. The purpose of this study is to investigate whether [68 Ga]Ga-FAPI-04 PET/CT can be a predictor of treatment response in RA. RESULTS Nineteen patients diagnosed with RA in the prospective cohort study were finally enrolled. Both total synovitis uptake (TSU) and metabolic synovitis volume (MSV) in [68 Ga]Ga-FAPI-04 and [18F]FDG PET/CT of the responders were significantly higher than those in non-responders according to Clinical Disease Activity Index (CDAI) and Simplified Disease Activity Index (SDAI) response criteria at 3-months' follow-up (P < 0.05). The PET joint count (PJC) detected in [68 Ga]Ga-FAPI-04 and [18F]FDG PET/CT were also significantly higher in CDAI responders than non-responders (P = 0.016 and 0.045, respectively). The clinical characteristics of disease activity at baseline did not show significant difference between the responders and non-responders, except CRP (P = 0.035 and 0.033 in CDAI and SDAI response criteria, respectively). The baseline PJCFAPI, TSUFAPI and MSVFAPI > cutoff values in [68 Ga]Ga-FAPI-04 PET/CT successfully discriminated CDAI and SDAI responders and non-responders at 3-months' follow-up. CONCLUSION [68 Ga]Ga-FAPI-04 uptake at baseline were significantly higher in early responders than those in non-responders. Trial registration ClinicalTrials. NCT04514614. Registered 13 August 2020, https://register. CLINICALTRIALS gov/prs/app/action/SelectProtocol?sid=S000A4PN&selectaction=Edit&uid=U0001JRW&ts=2&cx=-x9t7cp.
Collapse
Affiliation(s)
- Qingqing Pan
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Ziyue Zhou
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Min Li
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- Department of Endocrinology and Rheumatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu Jiang
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China.
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
8
|
Takatsuka D, Sawaki M, Hattori M, Yoshimura A, Kotani H, Kataoka A, Horisawa N, Ozaki Y, Endo Y, Nozawa K, Iwata H. Arthralgia induced by endocrine therapy with or without cyclin-dependent kinase 4/6 inhibitors in breast cancer: A systematic review and meta-analysis. Asia Pac J Clin Oncol 2023; 19:e175-e182. [PMID: 36085411 DOI: 10.1111/ajco.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) have been approved for breast cancer (BC) treatment. Several trials suggested that arthralgia was reduced in patients treated with ET plus CDK4/6i compared with that in those with ET-alone. We aimed to compare arthralgia rates in BC patients treated with/without CDK4/6i. We reviewed randomized controlled phase II/III trials investigating CDK4/6i with ET in hormone receptor-positive and epidermal growth factor 2-negative BC. Publications were retrieved from PubMed from January 2014 to April 2021. We compared arthralgia rates between patients who were administered ET plus CDK4/6i (CDK4/6i group) and those treated with ET-alone (control group). We reviewed 12 trials that reported data on adverse effects for arthralgia. These trials included 17,440 patients (9255 in the CDK4/6i group and 8185 in the control group). The arthralgia rate in the CDK4/6i group was significantly lower than that in the control group (27.6% vs. 34.8%, p < .001), especially in early BC (28.8% vs. 37.3%, p < .001). These suggested that the arthralgia rate in patients treated with ET plus CDK4/6i was lower than that in patients treated with ET-alone and that CDK4/6i may decrease the arthralgia rate in BC patients treated with ET, especially in early BC.
Collapse
Affiliation(s)
- Daiki Takatsuka
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Masataka Sawaki
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Masaya Hattori
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Akiyo Yoshimura
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Haruru Kotani
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Ayumi Kataoka
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Nanae Horisawa
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Yuri Ozaki
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Yuka Endo
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Kazuki Nozawa
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
9
|
Staniszewska M, Kiełbowski K, Rusińska K, Bakinowska E, Gromowska E, Pawlik A. Targeting cyclin-dependent kinases in rheumatoid arthritis and psoriasis - a review of current evidence. Expert Opin Ther Targets 2023; 27:1097-1113. [PMID: 37982244 DOI: 10.1080/14728222.2023.2285784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with synovial proliferation and bone erosion, which leads to the structural and functional impairment of the joints. Immune cells, together with synoviocytes, induce a pro-inflammatory environment and novel treatment agents target inflammatory cytokines. Psoriasis is a chronic immune-mediated skin disease, and several cytokines are considered as typical mediators in the progression of the disease, including IL-23, IL-22, and IL-17, among others. AREA COVERED In this review, we try to evaluate whether cyclin-dependent kinases (CDK), enzymes that regulate cell cycle and transcription of various genes, could become novel therapeutic targets in RA and psoriasis. We present the main results of in vitro and in vivo studies, as well as scarce clinical reports. EXPERT OPINION CDK inhibitors seem promising for treating RA and psoriasis because of their multidirectional effects. CDK inhibitors may affect not only the process of osteoclastogenesis, thereby reducing joint destruction in RA, but also the process of apoptosis of neutrophils and macrophages responsible for the development of inflammation in both RA and psoriasis. However, assessing the efficacy of these drugs in clinical practice requires multi-center, long-term clinical trials evaluating the effectiveness and safety of CDK-blocking therapy in RA and psoriasis.
Collapse
Affiliation(s)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Klaudia Rusińska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Gromowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
10
|
Xu B, Yang K, Han X, Hou J. Cuproptosis-related gene CDKN2A as a molecular target for IPF diagnosis and therapeutics. Inflamm Res 2023:10.1007/s00011-023-01739-7. [PMID: 37166466 DOI: 10.1007/s00011-023-01739-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive chronic interstitial lung disease with limited therapeutic options. Cuproptosis is a recently proposed novel form of programmed cell death, which has been strongly implicated in the development of various human diseases. However, the prognostic and therapeutic value of cuproptosis-related genes (CRGs) in IPF remains to be elucidated. METHODS In the present study, weighted gene co-expression network analysis (WGCNA) was employed to identify the key CRGs associated with the development of IPF. The subsequent GSEA, immune cell correlation analysis, and single-cell RNA-Seq analysis were conducted to explore the potential role of the identified CRGs in IPF. In addition, ROC curves and survival analysis were used to assess the prognostic value of the key CRGs in IPF. Moreover, we explored the molecular mechanisms of participation of identified key CRGs in the development of pulmonary fibrogenesis through in vivo and in vitro experiments. RESULTS The expression level of cyclin-dependent kinase inhibitor 2A (CDKN2A) is upregulated in the lung tissues of IPF patients and associated with disease severity. Notably, CDKN2A was constitutively expressed by fibrosis-promoting M2 macrophages. Decreased CDKN2A expression sensitizes M2 macrophages to elesclomol-induced cuproptosis in vitro. Inhibition of CDKN2A decreases the number of viable macrophages and attenuates bleomycin-induced pulmonary fibrosis in mice. CONCLUSION These findings indicate that CDKN2A mediates the resistance of fibrosis-promoting M2 macrophages to cuproptosis and promotes pulmonary fibrosis in mice. Our work provides fresh insights into CRGs in IPF with potential value for research in the pathogenesis, diagnosis, and a new therapy strategy for IPF.
Collapse
Affiliation(s)
- Baowen Xu
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kaiyong Yang
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Han
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiwei Hou
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Jiangsu Collaborative Innovation Canter of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Immunology and Reproduction Biology Laboratory and State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
11
|
Knab K, Chambers D, Krönke G. Synovial Macrophage and Fibroblast Heterogeneity in Joint Homeostasis and Inflammation. Front Med (Lausanne) 2022; 9:862161. [PMID: 35547214 PMCID: PMC9081642 DOI: 10.3389/fmed.2022.862161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
The synovial tissue is an immunologically challenging environment where, under homeostatic conditions, highly specialized subsets of immune-regulatory macrophages and fibroblasts constantly prevent synovial inflammation in response to cartilage- and synovial fluid-derived danger signals that accumulate in response to mechanical stress. During inflammatory joint diseases, this immune-regulatory environment becomes perturbed and activated synovial fibroblasts and infiltrating immune cells start to contribute to synovial inflammation and joint destruction. This review summarizes our current understanding of the phenotypic and molecular characteristics of resident synovial macrophages and fibroblasts and highlights their crosstalk during joint homeostasis and joint inflammation, which is increasingly appreciated as vital to understand the molecular basis of prevalent inflammatory joint diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Katharina Knab
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Chambers
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Yamamoto A, Saito T, Hosoya T, Kawahata K, Asano Y, Sato S, Mizoguchi F, Yasuda S, Kohsaka H. Therapeutic effect of cyclin-dependent kinase 4/6 inhibitor on dermal fibrosis in murine models of systemic sclerosis. Arthritis Rheumatol 2021; 74:860-870. [PMID: 34882985 DOI: 10.1002/art.42042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/18/2021] [Accepted: 12/02/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Histology of systemic sclerosis (SSc) includes an increased number of myofibroblasts, where transforming growth factor-β (TGF-β) plays a crucial role to promote dermal fibrosis. The objectives of this study were to examine whether the inhibition of cell cycle with cyclin-dependent kinase (CDK) 4/6 inhibitor suppress fibroblast proliferation and the differentiation into myofibroblasts, and the therapeutic effect of a CDK4/6 inhibitor on dermal fibrosis in murine models of SSc in monotherapy or in combination with TGF-β receptor inhibitor (TGFβRI). METHODS SSc fibroblasts were cultured in the presence or absence of TGF-β. Effects of palbociclib (CDKI), a CDK4/6 inhibitor, on fibroblast proliferation and TGF-β-induced differentiation into myofibroblasts were examined with BrdU uptake, immunofluorescence, and immunoblotting. Hypochlorous acid (HOCl)- and bleomycin-induced dermal fibrosis models were used to study the effect of CDKI on dermal fibrosis in monotherapy or in combination with galunisertib, a TGFβRI. RESULTS CDKI suppressed the proliferation of SSc fibroblasts and their TGF-β-induced differentiation into myofibroblast without inhibiting canonical and non-canonical TGF-β signals. Treatment of dermal fibrosis models with CDKI decreased dermal thickness and collagen content, as well as fibroblast proliferation and myofibroblast number. The combination therapy with CDKI and TGFβRI exerted additive anti-fibrotic effects. Mechanistically, CDKI suppressed the expression of cellular communication network (CCN) 2 and cadherin-11 important for fibrosis. CONCLUSION We demonstrated the therapeutic effect of CDKI on dermal fibrosis in monotherapy or in combination with TGFβRI. CDKI should be a novel agent for the treatment of SSc, which may be used with TGFβRI to increase the efficacy.
Collapse
Affiliation(s)
- Akio Yamamoto
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Saito
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kimito Kawahata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Mizoguchi
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hitoshi Kohsaka
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
13
|
Hosoya T, Saito T, Baba H, Tanaka N, Noda S, Komiya Y, Tagawa Y, Yamamoto A, Mizoguchi F, Kawahata K, Miyasaka N, Kohsaka H, Yasuda S. Chondroprotective effects of CDK4/6 inhibition via enhanced ubiquitin-dependent degradation of JUN in synovial fibroblasts. Rheumatology (Oxford) 2021; 61:3427-3438. [PMID: 34849618 PMCID: PMC9348617 DOI: 10.1093/rheumatology/keab874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/13/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Targeting synovial fibroblasts (SF) using a cyclin-dependent kinase (CDK) 4/6 inhibitor (CDKI) could be a potent therapy for rheumatoid arthritis (RA) via inhibition of proliferation and MMP-3 production. This study was designed to elucidate the mechanism of chondroprotective effects on SFs by CDK 4/6 inhibition. METHODS CDK4/6 activity was inhibited using CDKI treatment or enhanced by adenoviral gene transduction. Chondroprotective effects were evaluated using a collagen induced arthritis model (CIA). Gene and protein expression were evaluated with quantitative PCR, ELISA, and Western blotting. The binding of nuclear extracts to DNA was assessed with an electrophoresis mobility shift assay. RNA-Seq was performed to identify gene sets affected by CDKI treatment. RESULTS CDKI attenuated cartilage destruction and MMP-3 production in CIA. In RASFs, CDKI impaired the binding of AP-1 components to DNA and inhibited the production of MMP-1 and MMP-3, which contain the AP-1 binding sequence in their promoter. CDK4/6 protected JUN from proteasome-dependent degradation by inhibiting ubiquitination. The RNA-Seq analysis identified CDKI-sensitive inflammatory genes, which were associated with the pathway of RA-associated genes, cytokine-cytokine receptor interaction, and IL-17 signalling. Notably, the AP-1 motif was enriched in these genes. CONCLUSION The mechanism of chondroprotective effects by CDK4/6 inhibition was achieved by the attenuation of AP-1 transcriptional activity via the impaired stability of JUN. Since the pharmacologic inhibition of CDK4/6 has been established as tolerable in cancer treatment, it could also be beneficial in patients with RA due to its chondroprotective and anti-inflammatory effects.
Collapse
Affiliation(s)
- Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Saito
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Baba
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nao Tanaka
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Seiji Noda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Youji Komiya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhiro Tagawa
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akio Yamamoto
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumitaka Mizoguchi
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kimito Kawahata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuyuki Miyasaka
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hitoshi Kohsaka
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
14
|
Zou Y, Shen C, Shen T, Wang J, Zhang X, Zhang Q, Sun R, Dai L, Xu H. LncRNA THRIL is involved in the proliferation, migration, and invasion of rheumatoid fibroblast-like synoviocytes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1368. [PMID: 34733920 PMCID: PMC8506560 DOI: 10.21037/atm-21-1362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/20/2021] [Indexed: 01/01/2023]
Abstract
Background Fibroblast-like synoviocytes (FLSs), which can migrate and directly invade the cartilage and the bone, are crucial players in joint damage in rheumatoid arthritis (RA). Nevertheless, the detailed mechanisms underlying the aberrant activation of RA FLSs remain unclear. Several studies have attempted to explore the relationship between long non-coding RNAs (lncRNAs) and RA pathology; however, the role of lncRNAs in RA is unknown. The present study aimed to determine the functions of tumor necrosis factor-α and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory lincRNA (THRIL) in RA FLSs migration and invasion. Methods Small interfering RNA targeting THRIL or lentivirus overexpressing THRIL was used to knockdown or overexpress THRIL. Quantitative reverse transcription polymerase chain reaction (PCR) was employed for the detection of RNA expression. The proliferation rate of RA FLSs was measured using a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Migration and invasion were detected using a transwell chamber. Downstream targets were identified using a human cell cycle real-time PCR array and a human cell motility real-time PCR array. Results A significant decrease in THRIL expression was found in RA FLSs compared with cells from healthy control (HC)patients. THRIL is mainly localized in the nucleus. Knockdown of THRIL increased the proliferation, migration, and invasion of RA FLSs. In contrast, THRIL overexpression had the opposite effect. THRIL knockdown increased interleukin-1β (IL-1β)-triggered expression of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13. THRIL overexpression led to a significant decrease in MMP-13 expression in response to stimulation with IL-1β. Furthermore, we observed that the expression levels of cyclin-dependent kinase 1 (CDK1) and G2 and S phase-expressed-1 (GTSE1), both of which are associated with cellular mobility and proliferation, were downregulated with THRIL overexpression. Conclusions Reduced expression of lncRNA THRIL represses the proliferation, migration, and invasion of RA FLSs, suggesting that lncRNA THRIL might be a potential target for RA therapy.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Shen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuepei Zhang
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Runlu Sun
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
CDK4/6 Inhibitors and Arthralgia: A Single Institution Experience. Med Sci (Basel) 2021; 9:medsci9020042. [PMID: 34198899 PMCID: PMC8293403 DOI: 10.3390/medsci9020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Aromatase inhibitors (AIs) are associated with musculoskeletal pain in one third (20–47%) of breast cancer patients. Recently, CDK4/6 inhibitors have emerged as a new therapeutic approach in hormone receptor (HR)-positive breast cancer. While hematological and gastrointestinal toxicities are frequently reported during treatment with CDK4/6 inhibitors, musculoskeletal symptoms are less commonly encountered. Methods: Herein, we present a retrospective study of 47 breast cancer patients who received CDK4/6 inhibitors along with endocrine therapy in our department between 01/01/2018 and 01/09/2020. Results: Median age at diagnosis was 58 years (29–81). Median duration of treatment was 8.76 months (SD: 7.68; 0.47–30.13 months). Median PFS was 24.33 months (95% CI; 1.71–46.96). Overall, toxicity was reported in 61.7% of the cases (29/47). Arthralgia was reported in 6.4% (3/47) of the patients. Hematological toxicity was reported in 51.1% (24/47) of the patients. Neutropenia was the main hematological toxicity observed (86.8%; 22/47) along with anemia (4.3%; 2/47), thrombocytopenia (2.1%; 1/47), and leukopenia (4.2%; 1/24). Conclusions: Though our data reflect a small sample size, we report a reduced arthralgia rate (6.4%) during treatment with CDK4/6 inhibitors compared with that reported in studies of AIs (20–47%).
Collapse
|
16
|
Sonehara K, Okada Y. Genomics-driven drug discovery based on disease-susceptibility genes. Inflamm Regen 2021; 41:8. [PMID: 33691789 PMCID: PMC7944616 DOI: 10.1186/s41232-021-00158-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Genome-wide association studies have identified numerous disease-susceptibility genes. As knowledge of gene–disease associations accumulates, it is becoming increasingly important to translate this knowledge into clinical practice. This challenge involves finding effective drug targets and estimating their potential side effects, which often results in failure of promising clinical trials. Here, we review recent advances and future perspectives in genetics-led drug discovery, with a focus on drug repurposing, Mendelian randomization, and the use of multifaceted omics data.
Collapse
Affiliation(s)
- Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan. .,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan.
| |
Collapse
|
17
|
Murakami F, Horimoto Y, Shimizu H, Tada K, Yamaji K, Tamura N, Saito M. Amelioration of rheumatoid arthritis in a breast cancer patient treated with palbociclib: a case report. Mod Rheumatol Case Rep 2021; 5:214-217. [PMID: 33587021 DOI: 10.1080/24725625.2021.1886400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Rheumatoid arthritis is a common autoimmune disease that requires new therapeutic agents. Cyclin-dependent kinase 4/6 inhibitors have recently been approved for metastatic breast cancer patients and have also been reported to improve the arthritis score in collagen-induced arthritis mouse models. We report a 56-year-old woman who had previously been diagnosed with rheumatoid arthritis and treated with methotrexate. At age 40, she underwent surgery with curative intent for breast cancer but subsequently developed lung metastases. Palbociclib, a cyclin-dependent kinase 4/6 inhibitor, was administered in combination with fulvestrant (anti-oestrogen drug) for metastatic breast cancer. One month later, serum matrix metalloproteinase-3 and C-reactive protein levels were markedly decreased, and her rheumatoid arthritis symptoms, which had worsened just prior to the detection of metastatic lung disease, showed amelioration. Methotrexate, which had been used to treat her rheumatoid arthritis, could subsequently be administered in a reduced dose. The cyclin-dependent kinase 4/6 inhibitor was also effective for the metastatic breast cancer, and, to date, the patient's disease has remained stable for more than one year. Based on the results of basic research, cyclin-dependent kinase 4/6 inhibitors are promising new therapeutic agents for rheumatoid arthritis patients, although these drugs have not, as yet, been used in a clinical setting. To the best of our knowledge, this is the first report to describe a patient whose rheumatoid arthritis responded to a cyclin-dependent kinase 4/6 inhibitor administered for metastatic breast cancer.
Collapse
Affiliation(s)
- Fumi Murakami
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideo Shimizu
- General Surgery and Breast Surgery, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Kurisu Tada
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mitsue Saito
- Department of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Hosoya T, Shukla NM, Fujita Y, Yao S, Lao FS, Baba H, Yasuda S, Cottam HB, Carson DA, Hayashi T, Corr M. Identification of Compounds With Glucocorticoid Sparing Effects on Suppression of Chemokine and Cytokine Production by Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Front Pharmacol 2020; 11:607713. [PMID: 33390996 PMCID: PMC7773657 DOI: 10.3389/fphar.2020.607713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years target based drug discovery has expanded our therapeutic armamentarium in the treatment of inflammatory and autoimmune diseases. Despite these advances and adverse effects, glucocorticoids remain reliable agents that are used in many of these diseases. The anti-inflammatory mechanisms of glucocorticoids include the suppression of transcription factor activity like nuclear factor kappa B (NF-κB). By reanalyzing data from two prior high throughput screens (HTS) that utilized a NF-κB reporter construct in THP-1 cells, we identified 1824 small molecule synthetic compounds that demonstrated NF-κB suppressive activities similar to the glucocorticoids included in the original >134,000 compound libraries. These 1824 compounds were then rescreened for attenuating NF-κB activity at 5 and 16 h after LPS stimuli in the NF-κB THP-1 reporter cells. After a “Top X” selection approach 122 hit compounds were further tested for toxicity and suppression of LPS induced CXCL8 release in THP-1 cells. Excluding cytotoxic compounds, the remaining active compounds were grouped into chemotype families using Tanimoto based clustering. Promising representatives from clustered chemotype groups were commercially purchased for further testing. Amongst these index compounds a lead chemotype: 1H-pyrazolo [3,4 d] pyrimidin-4-amine, effectively suppressed CXCL8, and TNF production by THP-1 cells when stimulated with LPS, TNF or IL-1ß. Extending these studies to primary cells, these lead compounds also reduced IL-6 and CXCL8 production by TNF stimulated fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients. Importantly a lead 1H-pyrazolo [3,4 d] pyrimidin-4-amine compound demonstrated synergistic effects with dexamethasone when co-administered to TNF stimulated THP-1 cells and RA FLS in suppressing chemokine production. In summary, a cell based HTS approach identified lead compounds that reduced NF-κB activity and chemokine secretion induced by potent immunologic stimuli, and one lead compound that acted synergistically with dexamethasone as an anti-inflammatory agent showing a dose-sparing effect.
Collapse
Affiliation(s)
- Tadashi Hosoya
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States.,Department of Rheumatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nikunj M Shukla
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Yuya Fujita
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Shiyin Yao
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Fitzgerald S Lao
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Hiroyuki Baba
- Department of Rheumatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Howard B Cottam
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Dennis A Carson
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
19
|
Evaluation of anti rheumatic activity of Piper betle L. (Betelvine) extract using in silico, in vitro and in vivo approaches. Bioorg Chem 2020; 103:104227. [PMID: 32891004 DOI: 10.1016/j.bioorg.2020.104227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Rheumatoid Arthritis is a chronic, inflammatory, and systemic autoimmune disease, it affects elders worldwide. Herbal medicines have been used for the treatment of various ailments from ancient times. Betelvine (Piper betle L.) leaves have long been used in Asian countries as a medicine to relieve pain and some metabolic diseases. The present study of methanolic extract of phytochemical analysis confirms the presence of alkaloids, tannins, terpenoids, saponins, steroids, total flavonoids and total phenols. GC-MS analysis of MeOH extract of Piper betle (PBME) revealed the presence of 40 bioactive compounds. In vitro antioxidant and anti-inflammatory assays showed greater inhibitory effect. The anti-arthritic effects of PBME at 250 and 500 mg/kg concentration showed recovery from joint damage in in vivo rat model. Among the 40 GC-MS derived bioactives, 4-Allyl-1,2-Diacetoxybenzene exhibited the higher interactions with minimized binding energy to the RA targets of MMP 1 (-6.4 kcal/mol), TGF-β (-6.9 kcal/mol), IL-1β (-5.9 kcal/mol). Further, the effect of PBME extract against RA molecular disease targets (IL-1β, MMP1 and TGF- β) were studied using Real-time PCR. These results substantiate that P. betle leaves could be a source of therapeutics for the treatment of rheumatoid arthritis.
Collapse
|
20
|
Siebert S, Pratt AG, Stocken DD, Morton M, Cranston A, Cole M, Frame S, Buckley CD, Ng WF, Filer A, McInnes IB, Isaacs JD. Targeting the rheumatoid arthritis synovial fibroblast via cyclin dependent kinase inhibition: An early phase trial. Medicine (Baltimore) 2020; 99:e20458. [PMID: 32590730 PMCID: PMC7328978 DOI: 10.1097/md.0000000000020458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Targeted biologic therapies demonstrate similar efficacies in rheumatoid arthritis despite distinct mechanisms of action. They also exhibit a ceiling effect, with 10% to 20% of patients achieving remission in clinical trials. None of these therapies target synovial fibroblasts, which drive and maintain synovitis. Seliciclib (R-roscovitine) is an orally available cyclin-dependent kinase inhibitor that suppresses fibroblast proliferation, and is efficacious in preclinical arthritis models. We aim to determine the toxicity and preliminary efficacy of seliciclib in combination with biologic therapies, to inform its potential as an adjunctive therapy in rheumatoid arthritis. METHODS AND ANALYSIS TRAFIC is a non-commercial, multi-center, rolling phase Ib/IIa trial investigating the safety, tolerability, and efficacy of seliciclib in patients with moderate to severe rheumatoid arthritis receiving biologic therapies. All participants receive seliciclib with no control arm. The primary objective of part 1 (phase Ib) is to determine the maximum tolerated dose and safety of seliciclib over 4 weeks of dosing. Part 1 uses a restricted 1-stage Bayesian continual reassessment method based on a target dose-limiting toxicity probability of 35%. Part 2 (phase IIa) assesses the potential efficacy of seliciclib, and is designed as a single arm, single stage early phase trial based on a Fleming-A'Hern design using the maximum tolerated dose recommended from part 1. The primary response outcome after 12 weeks of therapy is a composite of clinical, histological and magnetic resonance imaging scores. Secondary outcomes include adverse events, pharmacodynamic and pharmacokinetic parameters, autoantibodies, and fatigue. ETHICS AND DISSEMINATION The study has been reviewed and approved by the North East - Tyne & Wear South Research Ethics Committee (reference 14/NE/1075) and the Medicines and Healthcare Products Regulatory Agency (MHRA), United Kingdom. Results will be disseminated through publication in relevant peer-reviewed journals and presentation at national and international conferences. TRIALS REGISTRATION ISRCTN, ISRCTN36667085. Registered on September 26, 2014; http://www.isrctn.com/ISRCTN36667085Current protocol version: Protocol version 11.0 (March 21, 2019).
Collapse
Affiliation(s)
- Stefan Siebert
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow
| | - Arthur G. Pratt
- Translational and Experimental Medicine Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | | | - Miranda Morton
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne
| | - Amy Cranston
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne
| | - Michael Cole
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne
| | | | - Christopher D. Buckley
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Institute for Inflammation and Ageing, University of Birmingham, Birmingham
- Kennedy Institute of Rheumatology, Roosevelt Drive, Headington University of Oxford, Oxford, UK
| | - Wan-Fai Ng
- Translational and Experimental Medicine Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Andrew Filer
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Institute for Inflammation and Ageing, University of Birmingham, Birmingham
| | - Iain B. McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow
| | - John D. Isaacs
- Translational and Experimental Medicine Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| |
Collapse
|
21
|
Ogawa K, Okada Y. The current landscape of psoriasis genetics in 2020. J Dermatol Sci 2020; 99:2-8. [PMID: 32536600 DOI: 10.1016/j.jdermsci.2020.05.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Psoriasis is an immune-mediated disease associated with skin and joint inflammation that affects large proportions of populations worldwide. It is a heritable disease: individuals' genetic backgrounds modulate their susceptibility. In genetics, multiple human leukocyte antigen (HLA) genes are most strongly associated with the risk of psoriasis, especially HLA-C*06:02. In the last 10 years, large-scale genome-wide association studies (GWASs) of psoriasis have been conducted in multiple populations, and these have substantially increased the number of genetic loci associated with psoriasis susceptibility (n > 80). Understanding the genetic background of psoriasis is important for understanding the disease's biology, identifying clinical biomarkers, discovering novel drug targets, and accelerating the journey towards personalized medicine. However, the application of whole-genome and long-read sequencing technology in psoriasis genetic analysis is still developing. Moreover, achieving practical strategies for translating psoriasis risk-associated genetic variants into functional annotations and clinical applications remains challenging. In this review, we detail the current and future landscape of psoriasis genetics and introduce the cutting-edge use of large-scale GWAS data, especially in the Japanese population.
Collapse
Affiliation(s)
- Kotaro Ogawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Laboratory of Statistical Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| |
Collapse
|
22
|
Machaj F, Rosik J, Szostak B, Pawlik A. The evolution in our understanding of the genetics of rheumatoid arthritis and the impact on novel drug discovery. Expert Opin Drug Discov 2019; 15:85-99. [PMID: 31661990 DOI: 10.1080/17460441.2020.1682992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Rheumatoid arthritis (RA) is an autoimmune disease that is characterized by chronic inflammation of the joints and affects 1% of the population. Polymorphisms of genes that encode proteins that primarily participate in inflammation may influence RA occurrence or become useful biomarkers for certain types of anti-rheumatic treatment.Areas covered: The authors summarize the recent progress in our understanding of the genetics of RA. In the last few years, multiple variants of genes that are associated with RA risk have been identified. The development of new technologies and the detection of new potential therapeutic targets that contribute to novel drug discovery are also described.Expert opinion: There is still the need to search for new genes which may be a potential target for RA therapy. The challenge is to develop appropriate strategies for achieving insight into the molecular pathways involved in RA pathogenesis. Understanding the genetics, immunogenetics, epigenetics and immunology of RA could help to identify new targets for RA therapy. The development of new technologies has enabled the detection of a number of new genes, particularly genes associated with proinflammatory cytokines and chemokines, B- and T-cell activation pathways, signal transducers and transcriptional activators, which might be potential therapeutic targets in RA.
Collapse
Affiliation(s)
- Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
23
|
Kaneshiro K, Sakai Y, Suzuki K, Uchida K, Tateishi K, Terashima Y, Kawasaki Y, Shibanuma N, Yoshida K, Hashiramoto A. Interleukin-6 and tumour necrosis factor-α cooperatively promote cell cycle regulators and proliferate rheumatoid arthritis fibroblast-like synovial cells. Scand J Rheumatol 2019; 48:353-361. [DOI: 10.1080/03009742.2019.1602164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- K Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Y Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - K Suzuki
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Uchida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - K Tateishi
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Terashima
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Y Kawasaki
- Department of Rheumatology, Kobe Kaisei Hospital, Kobe, Japan
| | - N Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - K Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - A Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
24
|
Matsumura T, Saito Y, Suzuki T, Teramoto A, Ozasa Y, Yamashita T, Fujimiya M, Saito-Chikenji T. Phosphorylated Platelet-Derived Growth Factor Receptor-Positive Cells With Anti-apoptotic Properties Accumulate in the Synovium of Patients With Rheumatoid Arthritis. Front Immunol 2019; 10:241. [PMID: 30828336 PMCID: PMC6384265 DOI: 10.3389/fimmu.2019.00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease caused by inflammation of the synovium and characterized by chronic polyarthritis that destroys bone and cartilage. Fibroblast-like synoviocytes (FLSs) in the synovium of patients with RA can promote cartilage and bone destruction by producing proteins such as matrix metalloproteinases and receptor activator of NF-κB ligand, thereby representing an important therapeutic target for RA. FLSs have several phenotypes depending on which cell surface proteins and adhesion factors are expressed. Identifying the cellular functions associated with different phenotypes and methods of controlling them are considered essential for developing therapeutic strategies for RA. In this study, synovial tissue was collected from patients with RA and control subjects who required surgery due to ligament injury or fracture. Immunohistological analysis was used to investigate the rates of positivity for phosphorylated platelet-derived growth factor receptor-αβ (pPDGFRαβ) and cadherin-11 (CDH11) expression, and apoptosis-related markers were assessed for each cell phenotype. Next, FLSs were isolated in vitro and stimulated with tumor necrosis factor-α (TNF-α) in addition to a combination of PDGF and transforming growth factor (2GF) to investigate pPDGFRαβ and CDH11 expression and the effects of the inhibition of TNF and cyclin-dependent kinase (CDK) 4/6 on FLSs. Immunohistological analysis showed a large percentage of pPDGFRαβ+CDH11– cells in the sub-lining layer (SL) of patients with RA. These cells exhibited increased B-cell lymphoma-2 expression, reduced TNF receptor-1 expression, resistance to cell death, and abnormal proliferation, suggesting a tendency to accumulate in the synovium. Further, in vitro 2GF stimulation of FLSs lowered, whereas 2GF + TNF stimulation increased the pPDGFRαβ/CDH11 ratio. Hypothesizing that FLSs stimulated with 2GF + TNF would accumulate in vivo in RA, we determined the therapeutic effects of TNF and CDK4/6 inhibitors. The TNF inhibitor lowered the pPDGFRαβ/CDH11 ratio, whereas the CDK4/6 inhibitor suppressed cell proliferation. However, a synergistic effect was not observed by combining both the drugs. We observed an increase in pPDGFRαβ+CDH11– cells in the SL of the RA synovium and accumulation of these cells in the synovium. We found that the TNF inhibitor suppressed FLS activity and the CDK4/6 inhibitor reduced cell proliferation.
Collapse
Affiliation(s)
- Takashi Matsumura
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoyuki Suzuki
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Teramoto
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasuhiro Ozasa
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako Saito-Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
25
|
Fujii R, Komatsu R, Sato T, Seki I, Konomi K, Aono H, Niki H, Yudoh K, Nishioka K, Nakajima T. SPACIA1/SAAL1 Deletion Results in a Moderate Delay in Collagen-Induced Arthritis Activity, along with mRNA Decay of Cyclin-dependent Kinase 6 Gene. Int J Mol Sci 2018; 19:ijms19123828. [PMID: 30513680 PMCID: PMC6320788 DOI: 10.3390/ijms19123828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 11/18/2022] Open
Abstract
This study was performed to elucidate the molecular function of the synoviocyte proliferation-associated in collagen-induced arthritis (CIA) 1/serum amyloid A-like 1 (SPACIA1/SAAL1) in mice CIA, an animal model of rheumatoid arthritis (RA), and human RA-synovial fibroblasts (RASFs). SPACIA1/SAAL1-deficient mice were generated and used to create mouse models of CIA in mild or severe disease conditions. Cell cycle-related genes, whose expression levels were affected by SPACIA1/SAAL1 small interfering RNA (siRNA), were screened. Transcriptional and post-transcriptional effects of SPACIA1/SAAL1 siRNA on cyclin-dependent kinase (cdk) 6 gene expression were investigated in human RASFs. SPACIA1/SAAL1-deficient mice showed later onset and slower progression of CIA than wild-type mice in severe disease conditions, but not in mild conditions. Expression levels of cdk6, but not cdk4, which are D-type cyclin partners, were downregulated by SPACIA1/SAAL1 siRNA at the post-transcriptional level. The exacerbation of CIA depends on SPACIA1/SAAL1 expression, although CIA also progresses slowly in the absence of SPACIA1/SAAL1. The CDK6, expression of which is up-regulated by the SPACIA1/SAAL1 expression, might be a critical factor in the exacerbation of CIA.
Collapse
Affiliation(s)
- Ryoji Fujii
- Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa 216-8512, Japan.
| | - Rie Komatsu
- Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa 216-8512, Japan.
| | - Tomoo Sato
- Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa 216-8512, Japan.
| | - Iwao Seki
- AYUMI Pharmaceutical Corporation, Kyoto 612-8374, Japan.
| | - Koji Konomi
- Santen Pharmaceutical Co., Ltd., Osaka 533-8651, Japan.
| | - Hiroyuki Aono
- AYUMI Pharmaceutical Corporation, Kyoto 612-8374, Japan.
| | - Hisateru Niki
- Department of Orthopedic Surgery, St. Marianna University School of Medicine, Kanagawa 216-8511, Japan.
| | - Kazuo Yudoh
- Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa 216-8512, Japan.
| | - Kusuki Nishioka
- Global Health Innovation Policy Program (GHIPP), National Graduate Institute for Policy Studies (GRIPS), Tokyo 106-8677, Japan.
| | - Toshihiro Nakajima
- Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa 216-8512, Japan.
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan.
- Misato Marine Hospital, Kochi 781-0112, Japan.
| |
Collapse
|
26
|
Li X, Wang J, Zhan Z, Li S, Zheng Z, Wang T, Zhang K, Pan H, Li Z, Zhang N, Liu H. Inflammation Intensity-Dependent Expression of Osteoinductive Wnt Proteins Is Critical for Ectopic New Bone Formation in Ankylosing Spondylitis. Arthritis Rheumatol 2018; 70:1056-1070. [PMID: 29481736 DOI: 10.1002/art.40468] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the molecular mechanism underlying inflammation-related ectopic new bone formation in ankylosing spondylitis (AS). METHODS Spinal tissues and sera were collected from patients with AS and healthy volunteers and examined for the expression of Wnt proteins. An in vitro cell culture system mimicking the local inflammatory microenvironment of bone-forming sites was established to study the relationship between inflammation and Wnt expression, the regulatory mechanism of inflammation-induced Wnt expression, and the role of Wnt signaling in new bone formation. Modified collagen-induced arthritis (CIA) and proteoglycan-induced spondylitis (PGIS) animal models were used to confirm the key findings in vivo. RESULTS The levels of osteoinductive Wnt proteins were increased in sera and spinal ligament tissues from patients with AS. Constitutive low-intensity tumor necrosis factor (TNF) stimulation, but not short-term or high-intensity TNF stimulation, induced persistent expression of osteoinductive Wnt proteins and subsequent bone formation through NF-κB (p65) and JNK/activator protein 1 (c-Jun) signaling pathways. Furthermore, inhibition of either the Wnt/β-catenin or Wnt/protein kinase Cδ (PKCδ) pathway significantly suppressed new bone formation. The increased expression of Wnt proteins was confirmed in both the modified CIA and PGIS models. A kyphotic and ankylosing phenotype of the spine was seen during long-term observation in the modified CIA model. Inhibition of either the Wnt/β-catenin or Wnt/PKCδ signaling pathway significantly reduced the incidence and severity of this phenotype. CONCLUSION Inflammation intensity-dependent expression of osteoinductive Wnt proteins is a key link between inflammation and ectopic new bone formation in AS. Activation of both the canonical Wnt/β-catenin and noncanonical Wnt/PKCδ pathways is required for inflammation-induced new bone formation.
Collapse
Affiliation(s)
- Xiang Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianru Wang
- The First Affiliated Hospital, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zhongping Zhan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sibei Li
- Guangzhou Chest Hospital, Guangzhou, China
| | - Zhaomin Zheng
- The First Affiliated Hospital, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | | | - Kuibo Zhang
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hehai Pan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zemin Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nu Zhang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- The First Affiliated Hospital, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| |
Collapse
|
27
|
You S, Koh JH, Leng L, Kim WU, Bucala R. The Tumor-Like Phenotype of Rheumatoid Synovium: Molecular Profiling and Prospects for Precision Medicine. Arthritis Rheumatol 2018; 70:637-652. [PMID: 29287304 PMCID: PMC5920713 DOI: 10.1002/art.40406] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by destructive hyperplasia of the synovium. Fibroblast-like synoviocytes (FLS) are a major component of synovial pannus and actively participate in the pathologic progression of RA. How rheumatoid FLS acquire and sustain such a uniquely aggressive phenotype remains poorly understood. We describe the current state of knowledge of the molecular alterations in rheumatoid FLS at the genomic, epigenomic, transcriptomic, proteomic, and metabolomic levels, which offers a means to reconstruct the pathways leading to rheumatoid pannus. Such data provide new pathologic insight and suggest means to more sensitively assess disease activity and response to therapy, as well as support new avenues for therapeutic development.
Collapse
Affiliation(s)
- Sungyong You
- Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jung Hee Koh
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Lin Leng
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Richard Bucala
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
28
|
Bergström B, Carlsten H, Ekwall AKH. Methotrexate inhibits effects of platelet-derived growth factor and interleukin-1β on rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Res Ther 2018; 20:49. [PMID: 29554943 PMCID: PMC5859417 DOI: 10.1186/s13075-018-1554-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background A key feature of joints in rheumatoid arthritis (RA) is the formation of hyperplastic destructive pannus tissue, which is orchestrated by activated fibroblast-like synoviocytes (FLS). We have demonstrated that the RA risk gene and tumor suppressor Limb bud and heart development (LBH) regulates cell cycle progression in FLS. Methotrexate (MTX) is the first-line treatment for RA, but its mechanisms of action remain incompletely understood. Here, we studied the effects of MTX on mitogen-induced FLS proliferation and expression of cell cycle regulators in vitro. Methods Primary FLS from patients with RA or osteoarthritis were stimulated with the mitogen platelet-derived growth factor (PDGF) and the cytokine interleukin-1β (IL-1β) in the presence or absence of MTX. Cells were then subjected to qPCR for gene expression and cell cycle analysis by flow cytometry. Results Stimulation with PDGF and IL-1β increased the percentage of FLS in the G2/M phase and shifted the cell morphology to a dendritic shape. These effects were inhibited by MTX. Furthermore, PDGF + IL-1β reduced LBH mRNA expression. However, MTX treatment yielded significantly higher transcript levels of LBH, and of CDKN1A (p21) and TP53 (p53), compared to untreated samples upon mitogen stimulation. The expression of DNA methyltransferase-1 (DNMT1) was also higher in the presence of MTX and there was strong correlation between DNMT1 and LBH expression. Conclusions Therapeutic concentrations of MTX abolish the effects of PDGF and IL-1β on tumor suppressor expression and inhibit mitogen-promoted FLS proliferation. These data demonstrate novel and important effects of MTX on pathogenic effector cells in the joint, which might involve epigenetic mechanisms.
Collapse
Affiliation(s)
- Beatrice Bergström
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.,Centre for Bone and Arthritis Research, University of Gothenburg, Gothenburg, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden.,Centre for Bone and Arthritis Research, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 480, 405 30, Gothenburg, Sweden. .,Centre for Bone and Arthritis Research, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
29
|
Human genetics contributes to the understanding of disease pathophysiology and drug discovery. J Orthop Sci 2017; 22:977-981. [PMID: 28830696 DOI: 10.1016/j.jos.2017.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/09/2017] [Accepted: 07/29/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Today, sequencing technology has markedly reduced the cost and time needed to read the human genome than ever before. Genome-wide association studies have successfully identified a number of disease risk genes. CONTRIBUTION TO UNDERSTANDING OF DISEASE PATHOPHYSIOLOGY Recent advancements in genomic technology have substantially furthered our understanding of the pathophysiology of many diseases, such as rheumatoid arthritis. TOWARD DRUG DISCOVERY AND FUTURE DIRECTION Accumulating genomic information is now expected to accelerate the discovery of novel drugs. Rapidly growing multi-dimensional information in life sciences would make human genetics significantly important in the near future.
Collapse
|
30
|
Matsuo Y, Saito T, Yamamoto A, Kohsaka H. Origins of fibroblasts in rheumatoid synovial tissues: Implications from organ fibrotic models. Mod Rheumatol 2017; 28:579-582. [PMID: 29067846 DOI: 10.1080/14397595.2017.1386837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fibroblasts play crucial roles in the pathogenesis of rheumatoid arthritis (RA). Accumulation of fibroblasts in the synovial tissues characterizes the pathology of RA. Understanding how fibroblasts accumulate could lead to discovery of new therapeutic targets in RA treatment, while current antirheumatic therapies still have problems in efficacy and safety. In this regard, several studies have revealed cellular origins of fibroblasts in fibrotic tissues in murine models of organ fibrosis. Some studies employed lineage tracing, which bring generally convincing results, using transgenic mice. They demonstrated that resident fibroblasts, pericytes, mesenchymal stem cells, epithelial cells, endothelial cells and bone-marrow-derived and circulating cells can be cellular origins of fibroblasts in organ fibrotic tissues. In this review, we summarize and discuss available evidence for the origins of fibroblasts accumulating in the arthritic synovial tissues and organ fibrotic tissues.
Collapse
Affiliation(s)
- Yusuke Matsuo
- a Department of Rheumatology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Tetsuya Saito
- a Department of Rheumatology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Akio Yamamoto
- a Department of Rheumatology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Hitoshi Kohsaka
- a Department of Rheumatology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| |
Collapse
|
31
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
32
|
Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions. Proc Natl Acad Sci U S A 2015; 112:5231-6. [PMID: 25848011 DOI: 10.1073/pnas.1424313112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acute kidney injury (AKI) is a potentially fatal syndrome characterized by a rapid decline in kidney function caused by ischemic or toxic injury to renal tubular cells. The widely used chemotherapy drug cisplatin accumulates preferentially in the renal tubular cells and is a frequent cause of drug-induced AKI. During the development of AKI the quiescent tubular cells reenter the cell cycle. Strategies that block cell-cycle progression ameliorate kidney injury, possibly by averting cell division in the presence of extensive DNA damage. However, the early signaling events that lead to cell-cycle activation during AKI are not known. In the current study, using mouse models of cisplatin nephrotoxicity, we show that the G1/S-regulating cyclin-dependent kinase 4/6 (CDK4/6) pathway is activated in parallel with renal cell-cycle entry but before the development of AKI. Targeted inhibition of CDK4/6 pathway by small-molecule inhibitors palbociclib (PD-0332991) and ribociclib (LEE011) resulted in inhibition of cell-cycle progression, amelioration of kidney injury, and improved overall survival. Of additional significance, these compounds were found to be potent inhibitors of organic cation transporter 2 (OCT2), which contributes to the cellular accumulation of cisplatin and subsequent kidney injury. The unique cell-cycle and OCT2-targeting activities of palbociclib and LEE011, combined with their potential for clinical translation, support their further exploration as therapeutic candidates for prevention of AKI.
Collapse
|