1
|
Lu S, Fang C. Isosakuranetin inhibits subchondral osteoclastogenesis for attenuating osteoarthritis via suppressing NF-κB/CXCL2 axis. Int Immunopharmacol 2024; 143:113321. [PMID: 39388890 DOI: 10.1016/j.intimp.2024.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
As the most predominant form of arthritis, osteoarthritis (OA) is featured with irreversible progress and involvement of the whole joint. Since OA onset, abnormal mechanical load initiates excessive osteoclastogenesis, evolving a rapid turnover of subchondral bone, cyst creation, synovitis, cartilage degradation, and ultimately resulting in joint failure. Additionally, aberrant vascularization and nociceptive pain are invoked by osteoclast-induced angiogenesis and sensory innervation in the subchondral bone. Rhizoma anemarrhenae (Zhimu) has been extensively demonstrated to show multiple pharmacological effects including anti-inflammation, anti-aging, and immunomodulation. Herein, Broussonin a (BRA), Markogein (MAN), and Isosakuranetin (ISN) derived from Rhizoma anemarrhenae, were initially discovered for their affinity with Bone marrow mononuclear cell (BMMC) membranes using the Cell membrane chromatography/Time of flight mass spectrometry (CMC/TOFMS) method, while only ISN exerted a significant inhibitory effect on RANKL-induced osteoclastogenesis in BMMC in vitro. Intriguingly, we disclosed that ISN blunted the overactivation of Tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts in subchondral bone in OA mice, as indicated by enhanced bone volume/total volume (BV/TV), trabecular number (Tb.N), and trabeculae thickness (Tb.Th), as well as diminished trabecular pattern factor (Tb.pf). Treatment with ISN also impaired aberrant angiogenesis and nociceptive reaction in the subchondral bone marrow. Moreover, ISN hindered the loss of articular cartilage proteoglycan and lowered the Osteoarthritis Research Society International (OARSI) grade, boosting the expression amount of Aggrecan (ACAN) and Collagen II (COL II) positive cells while reducing Matrix metalloproteinase 13 (MMP-13) positive cells. For mechanisms, We verified that ISN hampered subchondral osteoclastogenesis by blocking nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 2 (CXCL2) stimulation. Taken together, we reveal that ISN impedes the progression of OA by preventing hyperactivated subchondral osteoclastogenesis via suppressing the NF-κB/CXCL2 axis.
Collapse
Affiliation(s)
- Shuai Lu
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Chao Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
2
|
Chen X, Liu J, Wang G, Sun Y, Ding X, Zhang X. Regulating lipid metabolism in osteoarthritis: a complex area with important future therapeutic potential. Ann Med 2024; 56:2420863. [PMID: 39466361 PMCID: PMC11520103 DOI: 10.1080/07853890.2024.2420863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), which is characterized by pain, inflammation and pathological changes, is associated with abnormal lipid metabolism. Extensive studies have been conducted on the potential functions of lipids including cholesterol, fatty acids (FAs) and adipokines. MATERIALS AND METHODS By searching and screening the literature included in the PubMed and Web of Science databases from 1 January 2019 to 1 January 2024, providing an overview of research conducted on lipid metabolism and OA in the last 5 years. RESULTS In addition to adiponectin, several studies on the effects of lipid metabolism on OA have been consistent and complementary. Total cholesterol, triglycerides, low-density lipoprotein cholesterol, adipsin, leptin, resistin, saturated FAs, monounsaturated FAs, FA-binding protein 4 and the ratios of the FAs hexadecenoylcarnitine (C16:1) to dodecanoylcarnitine and C16:1 to tetradecanoylcarnitine induced mostly deleterious effects, whereas high-density lipoprotein cholesterol and apolipoprotein A/B/D had a positive impact on the health of joints. The situation for polyunsaturated FAs may be more complicated, as omega-3 increases the genetic susceptibility to OA, whereas omega-6 does the opposite. Alterations in lipid or adipokine levels and the resulting pathological changes in cartilage and other tissues (such as bone and synovium) ultimately affect joint pain, inflammation and cartilage degradation. Lipid or adipokine regulation has potential as a future direction for the treatment of OA, this potential avenue of OA treatment requires high-quality randomized controlled trials of combined lipid regulation therapy, and more in-depth in vivo and in vitro studies to confirm the underlying mechanism.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Guizhen Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Kuang B, Geng N, Yi M, Zeng Q, Fan M, Xian M, Deng L, Chen C, Pan Y, Kuang L, Luo F, Xie Y, Liu C, Deng Z, Nie M, Du Y, Guo F. Panaxatriol exerts anti-senescence effects and alleviates osteoarthritis and cartilage repair fibrosis by targeting UFL1. J Adv Res 2024:S2090-1232(24)00470-3. [PMID: 39442872 DOI: 10.1016/j.jare.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/01/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA), the most common degenerative joint disease, can eventually lead to disability. However, no safe or effective intervention is currently available. Therefore, there is an urgent need to develop effective drugs that reduce cartilage damage and treat OA. OBJECTIVES This study aimed to ascertain the potential of panaxatriol, a natural small molecule, as a therapeutic drug for alleviating the progression of OA. METHODS An in vitro culture of human cartilage explants and C28/I2 human chondrocytes and an in vivo surgically induced OA mouse model were used to evaluate the chondroprotective effect of panaxatriol. The Drug Affinity Responsive Target Stability assay, CRISPR-Cas9 assay, Whole-transcriptome RNA sequencing analysis and agonist or antagonist assays were used to identify the target and potential signaling pathways of panaxatriol. Poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) was used to construct the sustained-release system of panaxatriol. RESULTS Panaxatriol protected against OA by regulating chondrocyte metabolism. Ubiquitin-fold modifier 1-specific E3 ligase 1 (UFL1) was identified as a novel target of panaxatriol. Whole transcriptome RNA sequencing showed that UFL1 was closely related to cell senescence. Panaxatriol inhibited chondrocyte senescence through UFL1/forkhead box O1 (FOXO1)/P21 and UFL1/NF-κB/SASPs signaling pathways. It also could inhibit fibrocartilage formation during cartilage repair via the UFL1/FOXO1/Collagen 1 signaling pathway. Finally, we constructed a sustained-release system for panaxatriol based on PLGA-PEG, which reduced the number of intra-articular injections, thereby alleviating joint swelling and injury. CONCLUSIONS Panaxatriol exerts anti-senescence effects and has the potential to delay OA progression and reduce cartilage repair fibrosis by targeting UFL1.
Collapse
Affiliation(s)
- Biao Kuang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Miao Yi
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Qiqi Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mao Nie
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Geng N, Fan M, Kuang B, Zhang F, Xian M, Deng L, Chen C, Pan Y, Chen J, Feng N, Liang L, Ye Y, Liu K, Li X, Du Y, Guo F. 10-hydroxy-2-decenoic acid prevents osteoarthritis by targeting aspartyl β hydroxylase and inhibiting chondrocyte senescence in male mice preclinically. Nat Commun 2024; 15:7712. [PMID: 39231947 PMCID: PMC11375154 DOI: 10.1038/s41467-024-51746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Osteoarthritis is a degenerative joint disease with joint pain as the main symptom, caused by fibrosis and loss of articular cartilage. Due to the complexity and heterogeneity of osteoarthritis, there is a lack of effective individualized disease-modifying osteoarthritis drugs in clinical practice. Chondrocyte senescence is reported to participate in occurrence and progression of osteoarthritis. Here we show that small molecule 10-hydroxy-2-decenoic acid suppresses cartilage degeneration and relieves pain in the chondrocytes, cartilage explants from osteoarthritis patients, surgery-induced medial meniscus destabilization or naturally aged male mice. We further confirm that 10-hydroxy-2-decenoic acid exerts a protective effect by targeting the glycosylation site in the Asp_Arg_Hydrox domain of aspartyl β-hydroxylase. Mechanistically, 10-hydroxy-2-decenoic acid alleviate cellular senescence through the ERK/p53/p21 and GSK3β/p16 pathways in the chondrocytes. Our study uncovers that 10-hydroxy-2-decenoic acid modulate cartilage metabolism by targeting aspartyl β-hydroxylase to inhibit chondrocyte senescence in osteoarthritis. 10-hydroxy-2-decenoic acid may be a promising therapeutic drug against osteoarthritis.
Collapse
Affiliation(s)
- Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Biao Kuang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengmei Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Naibo Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Li Liang
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuanlan Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Kaiwen Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiaoli Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Qin W, Deng Y, Ren H, Liu Y, Liu L, Liu W, Zhao Y, Li C, Yang Z. Exploring the anticancer mechanism of cardiac glycosides using proteome integral solubility alteration approach. Cancer Med 2024; 13:e70252. [PMID: 39350574 PMCID: PMC11442762 DOI: 10.1002/cam4.70252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND AIMS Cardiac glycosides (CGs), traditionally used for heart failure, have shown potential as anti-cancer agents. This study aims to explore their multifaceted mechanisms in cancer cell biology using proteome integral solubility alteration (PISA), focusing on the interaction with key proteins implicated in cellular metabolism and mitochondrial function. METHODS We conducted lysate-based and intact-cell PISA assays on cancer cells treated with CGs (Digoxin, Digitoxin, Ouabain) to analyze protein solubility changes. This was followed by mass spectrometric analysis and bioinformatics to identify differentially soluble proteins (DSPs). Molecular docking simulations were performed to predict protein-CG interactions. Public data including gene expression changes upon CG treatment were re-analyzed for validation. RESULTS The PISA assays revealed CGs' broad-spectrum interactions, particularly affecting proteins like PKM2, ANXA2, SLC16A1, GOT2 and GLUD1. Molecular docking confirmed stable interactions between CGs and these DSPs. Re-analysis of public data supported the impact of CGs on cancer metabolism and cell signaling pathways. CONCLUSION Our findings suggest that CGs could be repurposed for cancer therapy by modulating cellular processes. The PISA data provide insights into the polypharmacological effects of CGs, warranting further exploration of their mechanisms and clinical potential.
Collapse
Affiliation(s)
- Wenjie Qin
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Yinhua Deng
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Huan Ren
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Yanling Liu
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Ling Liu
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Wenhui Liu
- Department of PharmacyThe Second Xiangya Hospital, Central South UniversityChangshaChina
- Institute of Clinical Pharmacy, Central South UniversityChangshaChina
| | - Yuxi Zhao
- Shenzhen Wininnovate Bio‐Tech Co., LtdShenzhenChina
| | - Chen Li
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| | - Zhiling Yang
- Department of PharmacyThe First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital)ChangshaChina
| |
Collapse
|
6
|
Cheng Q, He K, Zhu J, Li X, Wu X, Zeng C, Lei G, Wang N, Li H, Wei J. Memantine attenuates the development of osteoarthritis by blocking NMDA receptor mediated calcium overload and chondrocyte senescence. J Orthop Translat 2024; 48:204-216. [PMID: 39280634 PMCID: PMC11399475 DOI: 10.1016/j.jot.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 06/22/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
Background Memantine, which is an FDA-proven drug for the treatment of dementia, exerts its function by blocking the function of NMDA (N-methyl-D-aspartate) receptor, a calcium-permeable ion channel that reduces cytotoxic calcium overload. Chondrocyte senescence is a crucial cellular event that contributes to articular cartilage degeneration during osteoarthritis (OA) development. To date, the effects of memantine and its downstream NMDA receptor on chondrocyte senescence and OA have been rarely reported. Methods The protein levels of NMDA receptor and its agonistic ligand, glutamate, were compared between normal and OA chondrocytes. The quantity of intracellular calcium ions and the level of mitochondrial damage were evaluated using specific fluorescent probes and transmission electron microscopy (TEM), respectively. Chondrocyte senescence was evaluated by senescence-associated β-galactosidase (SA-β-Gal) staining and p16INK4a analysis. The function of NMDA receptor in chondrocyte senescence and OA was tested via agonists activation and gene knockdown experiments. The therapeutic effects of memantine on OA were examined both in vitro and in vivo. Additionally, to verify the findings from animal samples, a propensity score-matched cohort study was conducted using data from a United Kingdom primary care database (i.e., IQVIA Medical Research Database [IMRD]) to compare the risk of OA-related joint replacement involved in memantine initiators versus active comparators (i.e., acetylcholinesterase [AchE] initiators) in patients with dementia. Results The protein expression of NMDA receptor and the secretion of glutamate were both significantly increased in OA chondrocytes. NMDA receptor activation was found to stimulate chondrocyte calcium overload, which further led to mitochondrial fragmentation and chondrocyte senescence. Blocking the NMDA receptor with memantine and N-methyl-D-aspartate receptor subunit 1(NR1, the gene encoding NMDA receptor) knockdown resulted in reduced calcium influx, mitochondrial fragmentation, as well as cellular senescence in OA chondrocytes. Intra-articular injection of memantine in OA mice also exhibited protective effects against cartilage degeneration. Moreover, in the 1:5 propensity score-matched cohort study consisting of 6218 patients (n = 1435 in the memantine cohort; n = 4783 in the AchE cohort), the memantine initiator was associated with a lower risk of OA-related joint replacement than AchE initiators (Hazard ratio = 0.56, 95 % confidence interval: 0.34 to 0.99). Conclusion NMDA receptor plays an important role in inflammatory-induced cytotoxic calcium overload in chondrocytes, while memantine can effectively block the NMDA receptor to reduce chondrocyte senescence and retard the development of OA. The translational potential of this article As a clinically licensed drug used for the treatment of dementia, memantine has shown promising therapeutic effects on OA. Mechanistically, it functions by blocking NMDA receptor from mediating chondrocyte senescence. The protective effects of memantine against OA were verified not only by in vivo and in vitro experiments but also via a propensity score-matched human cohort study. These findings presented robust evidence for repurposing memantine for the treatment of OA.
Collapse
Affiliation(s)
- Qingmei Cheng
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ke He
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Junyu Zhu
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiao Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zeng
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guanghua Lei
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Wang
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Geng N, Xian M, Deng L, Kuang B, Pan Y, Liu K, Ye Y, Fan M, Bai Z, Guo F. Targeting the senescence-related genes MAPK12 and FOS to alleviate osteoarthritis. J Orthop Translat 2024; 47:50-62. [PMID: 39007035 PMCID: PMC11245888 DOI: 10.1016/j.jot.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Background The mechanism by which chondrocyte senescence aggravate OA progression has not yet been well elucidated. The aim of this study was to investigate the chondrocyte senescence related gene biosignatures in OA, and to analyze on the underlying mechanisms of senescence in OA. Materials and methods We intersected osteoarthritis dataset GSE82107 from GEO database and senescence dataset from CellAge database of human senescence-associated genes based on genetic manipulations experiments plus gene expression profilin, and screened out 4 overlapping genes. The hub genes were verified in vitro and in human OA cartilage tissues by qRT-PCR. We further confirmed the function of mitogen-activated protein kinase 12 (MAPK12) and Fos proto-oncogene (FOS) in OA in vitro and in vivo by qRT-PCR, western blotting, Edu staining, immunofluorescence, SA-β-gal staining, HE, IHC, von frey test, and hot plate. Results 1458 downregulated and 218 upregulated DEGs were determined from GSE82107, and 279 human senescence-associated genes were downloaded from CellAge database. After intersection assay, we screened out 4 overlapping genes, of which FOS, CYR61 and TNFSF15 were upregulated, MAPK12 was downregulated. The expression of MAPK12 was obviously downregulated, whereas the expression profiles of FOS, CYR61 and TNFSF15 were remarkedly upregulated in H2O2- or IL-1β-stimulated C28/I2 cells, human OA cartilage tissues, and knee cartilage of aging mice. Furthermore, both MAPK12 over-expression and FOS knock-down can promote cell proliferation and cartilage anabolism, inhibit cell senescence and cartilage catabolism, relieve joint pain in H2O2- or IL-1β-stimulated C28/I2 cells and mouse primary chondrocytes, destabilization of the medial meniscus (DMM) mice. Conclusion This study explored that MAPK12 and FOS are involved in the occurrence and development of OA through modulating chondrocyte senescence. They might be biomarkers of OA chondrocyte senescence, and provides some evidence as subsequent possible therapeutic targets for OA. The translational potential of this article The translation potential of this article is that we revealed MAPK12 and FOS can effectively alleviate OA by regulating chondrocyte senescence, and thus provided potential therapeutic targets for prevention or treatment of OA in the future.
Collapse
Affiliation(s)
- Nana Geng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Menglin Xian
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lin Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Biao Kuang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Kaiwen Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Yuanlan Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Mengtian Fan
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Zhixun Bai
- Department of Nephrology, The First Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fengjin Guo
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Li W, Lv Z, Wang P, Xie Y, Sun W, Guo H, Jin X, Liu Y, Jiang R, Fei Y, Tan G, Jiang H, Wang X, Liu Z, Wang Z, Xu N, Gong W, Wu R, Shi D. Near Infrared Responsive Gold Nanorods Attenuate Osteoarthritis Progression by Targeting TRPV1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307683. [PMID: 38358041 PMCID: PMC11040380 DOI: 10.1002/advs.202307683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/01/2023] [Indexed: 02/16/2024]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease worldwide, with the main pathological manifestation of articular cartilage degeneration. It have been investigated that pharmacological activation of transient receptor potential vanilloid 1 (TRPV1) significantly alleviated cartilage degeneration by abolishing chondrocyte ferroptosis. In this work, in view of the thermal activated feature of TRPV1, Citrate-stabilized gold nanorods (Cit-AuNRs) is conjugated to TRPV1 monoclonal antibody (Cit-AuNRs@Anti-TRPV1) as a photothermal switch for TRPV1 activation in chondrocytes under near infrared (NIR) irradiation. The conjugation of TRPV1 monoclonal antibody barely affect the morphology and physicochemical properties of Cit-AuNRs. Under NIR irradiation, Cit-AuNRs@Anti-TRPV1 exhibited good biocompatibility and flexible photothermal responsiveness. Intra-articular injection of Cit-AuNRs@Anti-TRPV1 followed by NIR irradiation significantly activated TRPV1 and attenuated cartilage degradation by suppressing chondrocytes ferroptosis. The osteophyte formation and subchondral bone sclerosis are remarkably alleviated by NIR-inspired Cit-AuNRs@Anti-TRPV1. Furthermore, the activation of TRPV1 by Cit-AuNRs@Anti-TRPV1 evidently improved physical activities and alleviated pain of destabilization of the medial meniscus (DMM)-induced OA mice. The study reveals Cit-AuNRs@Anti-TRPV1 under NIR irradiation protects chondrocytes from ferroptosis and attenuates OA progression, providing a potential therapeutic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Weitong Li
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Zhongyang Lv
- Department of OrthopedicsNanjing Jinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Peng Wang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Ya Xie
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Wei Sun
- Department of OrthopedicThe Jiangyin Clinical College of Xuzhou Medical UniversityJiangyin214400China
| | - Hu Guo
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Xiaoyu Jin
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Yuan Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Ruiyang Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalClinical College of Xuzhou Medical UniversityXuzhou Medical UniversityNanjingJiangsu221004China
| | - Yuxiang Fei
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Guihua Tan
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Huiming Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Xucai Wang
- Co‐Innovation Center for Efficient Processing and Utilization of Forest ResourcesCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037China
| | - Zizheng Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Zheng Wang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Nuo Xu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Wenli Gong
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Rui Wu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing University321 Zhongshan RoadNanjingJiangsu210008China
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower HospitalClinical College of Xuzhou Medical UniversityXuzhou Medical UniversityNanjingJiangsu221004China
| |
Collapse
|
9
|
Wu Y, Chen X, Peng C, Tang J, Li X, Li Q, Chen H, Jian C. Analysis and construction of differential protein expression correlation in atrial tissue of atrial fibrillation rats using iTRAQ technology. Minerva Med 2024; 115:220-222. [PMID: 38088056 DOI: 10.23736/s0026-4806.23.08951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Affiliation(s)
- Yifan Wu
- Department of Cardiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Xusong Chen
- Department of Cardiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Chang Peng
- Department of Cardiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Jiayu Tang
- Division of Clinical Laboratory, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Xinyue Li
- Department of Cardiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Qingjun Li
- Department of Cardiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Hejing Chen
- Department of Cardiology, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Chunyan Jian
- Department of Cardiology, Central People's Hospital of Zhanjiang, Zhanjiang, China -
| |
Collapse
|
10
|
Liu D, Mei W, Kang J, Liao T, Wei Y, Jie L, Shi L, Wang P, Mao J, Wu P. Casticin ameliorates osteoarthritic cartilage damage in rats through PI3K/AKT/HIF-1α signaling. Chem Biol Interact 2024; 391:110897. [PMID: 38309612 DOI: 10.1016/j.cbi.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Knee osteoarthritis (KOA) is a chronic, disabling knee joint lesion in which degeneration and defects in articular cartilage are the most important features. Casticin (CAS) is a flavonoid extracted from the Chinese herb Vitex species that has anti-inflammatory and antitumor effects. The aim of this study was to investigate the therapeutic and mechanistic effects of CAS on cartilage damage in KOA. A KOA rat model was established by anterior cruciate ligament transection (ACLT), and cartilage morphological changes were assessed by histological analysis and micro-CT scans. Subsequently, chondrocytes were treated with 10 ng/mL IL-1β to establish an OA model. CCK-8 assays and EdU assays were performed to assess the viability of CAS-treated chondrocytes. Western blotting, flow cytometry and Hoechst 33342/PI Double Stain were used to detect chondrocyte apoptosis. Western blotting, qRT‒PCR and ELISA were used to detect changes in inflammatory mediators. In addition, cartilage matrix-related indices were detected by Western blotting, qRT‒PCR and immunofluorescence (IF) analysis. Immunohistochemistry (IHC) and Western blotting were performed to detect the expression of p-PI3K, p-AKT and HIF-1α in vivo and in vitro. Micro-CT, pathological sections and related scores showed that CAS improved the alterations in bony structures and reduced cartilage damage and osteophyte formation in the ACLT model. In vivo, CAS attenuated IL-1β-induced cartilage matrix degradation, apoptosis and the inflammatory response. In addition, CAS inhibited the expression of the PI3K/AKT/HIF-1α signaling pathway in the ACLT animal model and IL-1β cell model. CAS may ameliorate cartilage damage in OA by inhibiting the PI3K/AKT/HIF-1α signaling pathway, suggesting that CAS is a potential strategy for the treatment of OA.
Collapse
Affiliation(s)
- Deren Liu
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Wei Mei
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Junfeng Kang
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; The Hospital of Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Taiyang Liao
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yibao Wei
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Lishi Jie
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Lei Shi
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Peimin Wang
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Jun Mao
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.
| | - Peng Wu
- Department of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China; Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
11
|
An X, Wang R, Lv Z, Wu W, Sun Z, Wu R, Yan W, Jiang Q, Xu X. WTAP-mediated m 6A modification of FRZB triggers the inflammatory response via the Wnt signaling pathway in osteoarthritis. Exp Mol Med 2024; 56:156-167. [PMID: 38172596 PMCID: PMC10834961 DOI: 10.1038/s12276-023-01135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis. However, the exact pathogenesis remains unclear. Emerging evidence shows that N6-methyladenosine (m6A) modification may have an important role in OA pathogenesis. This study aimed to investigate the role of m6A writers and the underlying mechanisms in osteoarthritic cartilage. Among m6A methyltransferases, Wilms tumor 1-associated protein (WTAP) expression most significantly differed in clinical osteoarthritic cartilage. WTAP regulated extracellular matrix (ECM) degradation, inflammation and antioxidation in human chondrocytes. Mechanistically, the m6A modification and relative downstream targets in osteoarthritic cartilage were assessed by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing, which indicated that the expression of frizzled-related protein (FRZB), a secreted Wnt antagonist, was abnormally decreased and accompanied by high m6A modification in osteoarthritic cartilage. In vitro dysregulated WTAP had positive effects on β-catenin expression by targeting FRZB, which finally contributed to the cartilage injury phenotype in chondrocytes. Intra-articular injection of adeno-associated virus-WTAP alleviated OA progression in a mouse model, while this protective effect could be reversed by the application of a Wnt/β-catenin activator. In summary, this study revealed that WTAP-dependent RNA m6A modification contributed to Wnt/β-catenin pathway activation and OA progression through post-transcriptional regulation of FRZB mRNA, thus providing a potentially effective therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China
| | - Rongliang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China
| | - Zhongyang Lv
- Department of Orthopedic, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, P.R. China
| | - Wenshu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China
| | - Ziying Sun
- Department of Orthopedic, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, P.R. China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China.
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China.
| |
Collapse
|
12
|
Berenbaum F. Annals of the Rheumatic Diseases collection on osteoarthritis (2018-2023): hopes and disappointments. Ann Rheum Dis 2024; 83:133-135. [PMID: 37734879 DOI: 10.1136/ard-2023-224840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Francis Berenbaum
- Department of Rheumatology, Sorbonne University, Paris, France
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- INSERM, Paris, France
| |
Collapse
|
13
|
Li P, Wang D, Lu W, He X, Hu J, Yun H, Zhao C, Yang L, Jie Q, Luo Z. Targeting FGFR3 signaling and drug repurposing for the treatment of SLC26A2-related chondrodysplasia in mouse model. J Orthop Translat 2024; 44:88-101. [PMID: 38282752 PMCID: PMC10818158 DOI: 10.1016/j.jot.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 08/18/2023] [Accepted: 09/20/2023] [Indexed: 01/30/2024] Open
Abstract
Background Mutations in Slc26a2 cause a spectrum of autosomal-recessive chondrodysplasia with a significant and negligible influence on the quality of life. It has been reported that Slc26a2 deficiency triggers the ATF6 branch of the UPR, which may, in turn, activate the negative regulator of the FGFR3 signaling pathway. However, the correlation between the deletion of Slc26a2 and the augmentation of downstream phosphorylation of FGFR3 has not been investigated in vivo. Methods First, we constructed Slc26a2 and Fgfr3 double knockout mouse lines and observed gross views of the born mice and histological staining of the tibial growth plates. The second approach was to construct tamoxifen-inducible Cre-ERT2 mouse models to replicate SLC26A2-related non-lethal dysplastic conditions. Pharmacological intervention was performed by administering the FGFR3 inhibitor NVP-BGJ398. The effect of NVP-BGJ398 on chondrocytes was assessed by Alcian blue staining, proliferation, apoptosis, and chondrocyte-specific markers and then verified by western blotting for variations in the downstream markers of FGFR3. The growth process was detected using X-rays, micro-CT examination, histomorphometry staining of growth plates, and immunofluorescence. Results Genetic ablation of Fgfr3 in embryonic Slc26a2-deficient chondrocytes slightly attenuated chondrodysplasia. Subsequently, in the constructed mild dysplasia model, we found that postnatal intervention with Fgfr3 gene in Slc26a2-deficient chondrocytes partially alleviated chondrodysplasia. In chondrocyte assays, NVP-BGJ398 suppressed the defective phenotype of Slc26a2-deficient chondrocytes and restored the phosphorylation downstream of FGFR3 in a concentration-dependent manner. In addition, in vivo experiments showed significant alleviation of impaired chondrocyte differentiation, and micro-CT analysis showed a clear improvement in trabecular bone microarchitectural parameters. Conclusion Our results suggested that inhibition of FGFR3 signaling pathway overactivation and NVP-BGJ398 has promising therapeutic implications for the development of SLC26A2-related skeletal diseases in humans. The translational potential of this article Our data provide genetic and pharmacological evidence that targeting FGFR3 signaling via NVP-BGJ398 could be a route for the treatment of SLC26A2-associated skeletal disorders, which promisingly advances translational applications and therapeutic development.
Collapse
Affiliation(s)
- Pan Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Weiguang Lu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin He
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jingyan Hu
- Department of Biology, Northwestern University, Xi'an, China
| | - Haitao Yun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chengxiang Zhao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Qiang Jie
- Department of Orthopedic Surgery, HongHui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
14
|
Xu Y, Hu X, Cai J, Li Y, Zou Y, Wang Y, Xie C, Xu S, Wang Y, Zheng Y, Mahamat DA, Xu Y, Wang X, Li X, Liu A, Chen D, Zhu L, Guo J. Atractylenolide-III alleviates osteoarthritis and chondrocyte senescence by targeting NF-κB signaling. Phytother Res 2023; 37:4607-4620. [PMID: 37380363 DOI: 10.1002/ptr.7929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
Atractylenolide-III (AT-III) is well known as its role in antioxidant and anti-inflammatory. Present study was aimed to figure out its effects on osteoarthritis and potential mechanisms. Rat model, human osteoarthritis cartilage explants as well as rat/human chondrocyte cultures were prepared to test AT-III's effects on osteoarthritis progression and chondrocyte senescence. Potential targeted molecules of AT-III were predicted using network pharmacology and molecular docking, assessed by Western blotting and then verified with rescue experiments. AT-III treatment alleviated osteoarthritis severity (shown by OARSI grading score and micro-CT) and chondrocyte senescence (indexed by levels of SA-β-gal, P16, P53, MMP13, ROS and ratio of healthy/collapsed mitochondrial membrane potentials). Network pharmacology and molecular docking suggested that AT-III might play role through NF-κB pathway. Further experiments revealed that AT-III reduced phosphorylation of IKKα/β, IκBα and P65 in NF-κB pathway. As well as nuclear translocation of p65. Both in vivo and in vitro experiments indicated that AT-III's effects on osteoarthritis and anti-senescence were reversed by an NF-κB agonist. AT-III could alleviate osteoarthritis by inhibiting chondrocyte senescence through NF-κB pathway, which indicated that AT-III is a prospective drug for osteoarthritis treatment.
Collapse
Affiliation(s)
- Yizhou Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofang Hu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiale Cai
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunlun Li
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Zou
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changnan Xie
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuyi Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanqing Wang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuli Zheng
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Djibril Adam Mahamat
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuantao Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xianghai Wang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijun Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfeng Chen
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiasong Guo
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
15
|
Meng Q, Liu K, Liu Z, Liu J, Tian Z, Qin S, Wei J, Cheng L. Digoxin protects against intervertebral disc degeneration via TNF/NF-κB and LRP4 signaling. Front Immunol 2023; 14:1251517. [PMID: 37790932 PMCID: PMC10544936 DOI: 10.3389/fimmu.2023.1251517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a leading cause of low back pain (LBP). The pathological process of IVDD is associated with inflammatory reactions and extracellular matrix (ECM) disorders. Digoxin is widely used for treating heart failure, and it has been reported to have anti-inflammatory effects. Objective This study is to investigate the role of digoxin in the pathogenesis of intervertebral disc degeneration as well as the involved molecular mechanism, particularly the potential target protein. Methods We exploited a rat needle model to investigate digoxin's role in intervertebral disc degeneration in vivo. Safranin O staining was used to measure cartilaginous tissue in the intervertebral disc. The morphological changes of intervertebral discs in animal models were determined by Hematoxylin-Eosin (H&E) staining and the pathological score. Primary nucleus pulposus cells (NP cells) from intervertebral discs of patients and murine were used in the present study. Western-Blotting assay, Real-time PCR assay, immunofluorescence staining, and immunochemistry were used to detect the role of digoxin in anti-TNF-α-induced inflammatory effects in vitro. Transfection of siRNA was used to regulate low-density lipoprotein receptor-related protein 4 (LRP4) expression in NP cells to investigate the potential protein target of digoxin. Results Digoxin protected against intervertebral disc degeneration in rat needle models. Digoxin was found to exert its disc-protective effects through at least three different pathways by a) suppressing TNF-α-induced inflammation, b) attenuating ECM destruction, c) significantly promoting ECM anabolism. Additionally, LRP4 was found to be the downstream molecule of digoxin in NP cells for anti-inflammation and regulation of ECM metabolism. The knockdown of LRP4 downregulated the protective effect of digoxin in NP cells. Conclusion These findings suggest that digoxin may be a potential therapeutic agent for intervertebral disc degeneration through anti-catabolism and pro-anabolism. Digoxin might also work as an alternative for other inflammation-related diseases.
Collapse
Affiliation(s)
- Qunbo Meng
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Kaiwen Liu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Zhenchuan Liu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Jinbo Liu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ziyu Tian
- Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shanshan Qin
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianlu Wei
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Qilu Hospital of Shandong University Spine and Spinal Cord Disease Research Center-International Chinese Musculoskeletal Research Society (ICMRS) Collaborating Center for Orthopaedic Translational Research, Shandong University, Jinan, Shandong, China
| | - Lei Cheng
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Qilu Hospital of Shandong University Spine and Spinal Cord Disease Research Center-International Chinese Musculoskeletal Research Society (ICMRS) Collaborating Center for Orthopaedic Translational Research, Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Yang J, Jiang T, Xu G, Wang S, Liu W. Exploring molecular mechanisms underlying the pathophysiological association between knee osteoarthritis and sarcopenia. Osteoporos Sarcopenia 2023; 9:99-111. [PMID: 37941536 PMCID: PMC10627980 DOI: 10.1016/j.afos.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Objectives Accumulating evidence indicates a strong link between knee osteoarthritis (KOA) and sarcopenia. However, the mechanisms involved have not yet been elucidated. This study primarily aims to explore the molecular mechanisms that explain the connection between these 2 disorders. Methods The gene expression profiles for KOA and sarcopenia were obtained from the Gene Expression Omnibus database, specifically from GSE55235, GSE169077, and GSE1408. Various bioinformatics techniques were employed to identify and analyze common differentially expressed genes (DEGs) across the 3 datasets. The techniques involved the analysis of Gene Ontology and pathways to enhance understanding, examining protein-protein interaction (PPI) networks, and identifying hub genes. In addition, we constructed the network of interactions between transcription factors (TFs) and genes, the co-regulatory network of TFs and miRNAs for hub genes, and predicted potential drugs. Results In total, 14 common DEGs were found between KOA and sarcopenia. Detailed information on biological processes and signaling pathways of common DEGs was obtained through enrichment analysis. After performing PPI network analysis, we discovered 4 hub genes (FOXO3, BCL6, CDKN1A, and CEBPB). Subsequently, we developed coregulatory networks for these hub genes involving TF-gene and TF-miRNA interactions. Finally, we identified 10 potential chemical compounds. Conclusions By conducting bioinformatics analysis, our study has successfully identified common gene interaction networks between KOA and sarcopenia. The potential of these findings to offer revolutionary understanding into the common development of these 2 conditions could lead to the identification of valuable targets for therapy.
Collapse
Affiliation(s)
- Jiyong Yang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Jiang
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Guangming Xu
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Shuai Wang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wengang Liu
- Department of Orthopedics, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| |
Collapse
|
17
|
Wu S, Zhang H, Wang S, Sun J, Hu Y, Liu H, Liu J, Chen X, Zhou F, Bai L, Wang X, Su J. Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. MATERIALS HORIZONS 2023; 10:3507-3522. [PMID: 37255101 DOI: 10.1039/d3mh00042g] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cartilage defects are usually caused by acute trauma and chronic degeneration. However, it is still a great challenge to improve the repair of articular cartilage defects due to the limited self-regeneration capacity of such defects. Herein, a novel ROS-responsive in situ nanocomposite hydrogel loaded with kartogenin (KGN) and bone marrow-derived stem cells (BMSCs) was designed and constructed via the enzymatic reaction of fibrinogen and thrombin. Meanwhile, a ROS-responsive thioketal (TK)-based liposome was synthesized to load the chondrogenesis-inducing factor KGN, the bioenzyme thrombin and an ultrasound-sensitive agent PpIX. Under ultrasound stimulation, the TK-based liposome was destroyed, followed by in situ gelation of fibrinogen and thrombin. Moreover, sustained release of KGN was realized by regulating the ultrasound conditions. Importantly, ROS generation and KGN release within the microenvironment of the in situ fibrin hydrogel significantly promoted chondrogenic differentiation of BMSCs via the Smad5/mTOR signalling pathway and effectively improved cartilage regeneration in a rat articular cartilage defect model. Overall, the novel in situ nanocomposite hydrogel with ROS-controlled drug release has great potential for efficient cartilage repair.
Collapse
Affiliation(s)
- Shunli Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jinru Sun
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Shaoxing Institute of Technology at Shanghai University, Shaoxing, 312000, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
18
|
Zhang X, Sun Z, Zhang Y, Pan L, Jiang W, Dong H, Jin Z, Kang J, Liu R, Ning B. Periplocin targets low density lipoprotein receptor-related protein 4 to attenuate osteoclastogenesis and protect against osteoporosis. Biochem Pharmacol 2023; 211:115516. [PMID: 36966936 DOI: 10.1016/j.bcp.2023.115516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Osteoporosis is a common inflammaging-related condition, where long-term accumulation of pro-inflammatory cytokines causes massive bone loss. Periplocin, a cardiotonic steroid isolated from Periploca forrestii, has been proved to reduce inflammation in several inflammatory diseases, such as rheumatoid arthritis. However, its effect and mechanism of inflammation in osteoporosis, in which pro-inflammatory factors accelerate bone loss, has not been well demonstrated. In this study, periplocin attenuated receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation of bone marrow-derived macrophages (BMMs) and RAW264.7 cells in vitro. It reduced osteoclast numbers and bone resorption in a concentration- and time-dependent manner. Further, periplocin treatment resulted in reduced bone loss on mice with ovariectomy-induced osteoporosis in vivo. By transcriptome sequencing, periplocin was indicated to function through inhibition of the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways and attenuating interactions between NF-κB and nuclear factor of activated T-cells 1 (NFATc1). It was further detected to bind low density lipoprotein receptor-related protein 4 (LRP4) in osteoclasts to exert anti-inflammatory and anti-osteoclastic effects. Overall, the findings have highlighted a better understanding for the anti-inflammatory and anti-osteoclastic role of periplocin in osteoporosis and its mechanism, bringing new possibilities for osteoporosis treatment.
Collapse
Affiliation(s)
- Xiaodi Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Zhengfang Sun
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China
| | - Liuzhu Pan
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China
| | - Wei Jiang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China
| | - Hui Dong
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250013, China
| | - Zhengxin Jin
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250013, China
| | - Jianning Kang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China
| | - Ronghan Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China.
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250013, China; Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250013, China.
| |
Collapse
|