1
|
Vanderhasselt T, Naeyaert M, Buls N, Allemeersch GJ, Raeymaeckers S, Raeymaekers H, Smeets N, Cools F, de Mey J, Dudink J. Synthetic magnetic resonance-based relaxometry and brain volume: cutoff values for predicting neurocognitive outcomes in very preterm infants. Pediatr Radiol 2024; 54:1523-1531. [PMID: 38980354 PMCID: PMC11324712 DOI: 10.1007/s00247-024-05981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Early neurorehabilitation can enhance neurocognitive outcomes in very preterm infants (<32 weeks), and conventional magnetic resonance imaging (MRI) is commonly used to assess neonatal brain injury; however, the predictive value for neurodevelopmental delay is limited. Timely predictive quantitative biomarkers are needed to improve early identification and management of infants at risk of neurodevelopmental delay. OBJECTIVE To evaluate the potential of quantitative synthetic MRI measurements at term-equivalent age as predictive biomarkers of neurodevelopmental impairment and establish practical cutoff values to guide clinical decision-making. MATERIALS AND METHODS This retrospective study included 93 very preterm infants who underwent synthetic MRI at term-equivalent age between January 2017 and September 2020. Clinical outcomes were assessed using the Bayley-III scale of infant development (mean age 2.1 years). The predictive value for impaired development was analyzed using receiver operating characteristic curves for synthetic MRI-based volumetry and T1 and T2 relaxation measurements. RESULTS The T1 relaxation time in the posterior limb of the internal capsule was a potent predictor of severe (sensitivity, 92%; specificity, 80%; area under the curve (AUC), 0.91) and mild or severe (AUC, 0.75) developmental impairment. T2 relaxation time in the posterior limb of the internal capsule was a significant predictor of severe impairment (AUC, 0.76), whereas the brain parenchymal volume was a significant predictor of severe (AUC, 0.72) and mild or severe impairment (AUC, 0.71) outperforming the reported qualitative MRI scores (AUC, 0.66). CONCLUSION The proposed cutoff values for T1 relaxation time in the posterior limb of the internal capsule and for total brain volume measurements, derived from synthetic MRI, show promise as predictors of both mild and severe neurodevelopmental impairment in very preterm infants.
Collapse
Affiliation(s)
- Tim Vanderhasselt
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Maarten Naeyaert
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Nico Buls
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Gert-Jan Allemeersch
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Steven Raeymaeckers
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Hubert Raeymaekers
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Nathalie Smeets
- Department of Pediatric Neurology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Filip Cools
- Department of Neonatology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Johan de Mey
- Department of Radiology, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Park J, Jang M, Heier L, Limperopoulos C, Zun Z. Rapid anatomical imaging of the neonatal brain using T 2 -prepared 3D balanced steady-state free precession. Magn Reson Med 2023; 89:1456-1468. [PMID: 36420869 PMCID: PMC10208121 DOI: 10.1002/mrm.29537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a new approach to 3D gradient echo-based anatomical imaging of the neonatal brain with a substantially shorter scan time than standard 3D fast spin echo (FSE) methods, while maintaining a high SNR. METHODS T2 -prepration was employed immediately prior to image acquisition of 3D balanced steady-state free precession (bSSFP) with a single trajectory of center-out k-space view ordering, which requires no magnetization recovery time between imaging segments during the scan. This approach was compared with 3D FSE, 2D single-shot FSE, and product 3D bSSFP imaging in numerical simulations, plus phantom and in vivo experiments. RESULTS T2 -prepared 3D bSSFP generated image contrast of gray matter, white matter, and CSF very similar to that of reference T2 -weighted imaging methods, without major image artifacts. Scan time of T2 -prepared 3D bSSFP was remarkably shorter compared to 3D FSE, whereas SNR was comparable to that of 3D FSE and higher than that of 2D single-shot FSE. Specific absorption rate of T2 -prepared 3D bSSFP remained within the safety limit. Determining an optimal imaging flip angle of T2 -prepared 3D bSSFP was critical to minimizing blurring of images. CONCLUSION T2 -prepared 3D bSSFP offers an alternative method for anatomical imaging of the neonatal brain with dramatically reduced scan time compared to standard 3D FSE and higher SNR than 2D single-shot FSE.
Collapse
Affiliation(s)
- Jinho Park
- Department of Cardiology, Yonsei University, Seoul, Korea
| | - MinJung Jang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Linda Heier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC, USA
- Division of Fetal and Transitional Medicine, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
- Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Lautarescu A, Bonthrone AF, Pietsch M, Batalle D, Cordero-Grande L, Tournier JD, Christiaens D, Hajnal JV, Chew A, Falconer S, Nosarti C, Victor S, Craig MC, Edwards AD, Counsell SJ. Maternal depressive symptoms, neonatal white matter, and toddler social-emotional development. Transl Psychiatry 2022; 12:323. [PMID: 35945202 PMCID: PMC9363426 DOI: 10.1038/s41398-022-02073-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Maternal prenatal depression is associated with increased likelihood of neurodevelopmental and psychiatric conditions in offspring. The relationship between maternal depression and offspring outcome may be mediated by in-utero changes in brain development. Recent advances in magnetic resonance imaging (MRI) have enabled in vivo investigations of neonatal brains, minimising the effect of postnatal influences. The aim of this study was to examine associations between maternal prenatal depressive symptoms, infant white matter, and toddler behaviour. 413 mother-infant dyads enrolled in the developing Human Connectome Project. Mothers completed the Edinburgh Postnatal Depression Scale (median = 5, range = 0-28, n = 52 scores ≥ 11). Infants (n = 223 male) (median gestational age at birth = 40 weeks, range 32.14-42.29) underwent MRI (median postmenstrual age at scan = 41.29 weeks, range 36.57-44.71). Fixel-based fibre metrics (mean fibre density, fibre cross-section, and fibre density modulated by cross-section) were calculated from diffusion imaging data in the left and right uncinate fasciculi and cingulum bundle. For n = 311, internalising and externalising behaviour, and social-emotional abilities were reported at a median corrected age of 18 months (range 17-24). Statistical analysis used multiple linear regression and mediation analysis with bootstrapping. Maternal depressive symptoms were positively associated with infant fibre density in the left (B = 0.0005, p = 0.003, q = 0.027) and right (B = 0.0006, p = 0.003, q = 0.027) uncinate fasciculus, with left uncinate fasciculus fibre density, in turn, positively associated with social-emotional abilities in toddlerhood (B = 105.70, p = 0.0007, q = 0.004). In a mediation analysis, higher maternal depressive symptoms predicted toddler social-emotional difficulties (B = 0.342, t(307) = 3.003, p = 0.003), but this relationship was not mediated by fibre density in the left uncinate fasciculus (Sobel test p = 0.143, bootstrapped indirect effect = 0.035, SE = 0.02, 95% CI: [-0.01, 0.08]). There was no evidence of an association between maternal depressive and cingulum fibre properties. These findings suggest that maternal perinatal depressive symptoms are associated with neonatal uncinate fasciculi microstructure, but not fibre bundle size, and toddler behaviour.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - J-Donald Tournier
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Joseph V Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Andrew Chew
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Suresh Victor
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
| | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Female Hormone Clinic, South London and Maudsley National Health Service Foundation Trust, London, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- EPSRC/Wellcome Centre for Medical Engineering, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|
4
|
Apps JR. Research in practice: fitting it together. Arch Dis Child Educ Pract Ed 2021; 106:314-316. [PMID: 32321737 DOI: 10.1136/archdischild-2019-318689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 11/04/2022]
Affiliation(s)
- John R Apps
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
5
|
Malik SJ, Hand JW, Satnarine R, Price AN, Hajnal JV. Specific absorption rate and temperature in neonate models resulting from exposure to a 7T head coil. Magn Reson Med 2021; 86:1299-1313. [PMID: 33811667 DOI: 10.1002/mrm.28784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To investigate safe limits for neonatal imaging using a 7T head coil, including both specific absorption rate (SAR) and temperature predictions. METHODS Head-centered neonate models were simulated using finite-difference time domain-based electromagnetic and thermal solvers. The effects of higher water content of neonatal tissues compared with adults, position shifts, and thermal insulation were also considered. An adult model was simulated for comparison. RESULTS Maximum and average SAR are both elevated in the neonate when compared with an adult model. When normalized to B1+ , the SAR experienced by a neonate is greater than an adult by approximately a factor of 2; when normalized to net forward power (forward-reflected), this increases to a factor of 2.5-3.0; and when normalized to absorbed power, approximately a factor of 4. Use of age-adjusted dielectric properties significantly increases the predicted SAR, compared with using adult tissue properties for the neonates. Thermal simulations predict that change in core temperature/maximum temperature remain compliant with International Electrotechnical Commission limits when a thermally insulated neonate is exposed at the SAR limit for up to an hour. CONCLUSION This study of two neonate models cannot quantify the variability expected within a larger population. Likewise, the use of age-adjusted dielectric properties have a significant effect, but while their use is well motivated by literature, there is uncertainty in the true dielectric properties of neonatal tissue. Nevertheless, the main finding is that unlike at lower field strengths, operational limits for 7T neonatal MRI using an adult head coil should be more conservative than limits for use on adults.
Collapse
Affiliation(s)
- Shaihan J Malik
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom.,Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Jeffrey W Hand
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Ryan Satnarine
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Anthony N Price
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom.,Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Joseph V Hajnal
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom.,Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
6
|
Vanderhasselt T, Naeyaert M, Watté N, Allemeersch GJ, Raeymaeckers S, Dudink J, de Mey J, Raeymaekers H. Synthetic MRI of Preterm Infants at Term-Equivalent Age: Evaluation of Diagnostic Image Quality and Automated Brain Volume Segmentation. AJNR Am J Neuroradiol 2020; 41:882-888. [PMID: 32299803 DOI: 10.3174/ajnr.a6533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Neonatal MR imaging brain volume measurements can be used as biomarkers for long-term neurodevelopmental outcome, but quantitative volumetric MR imaging data are not usually available during routine radiologic evaluation. In the current study, the feasibility of automated quantitative brain volumetry and image reconstruction via synthetic MR imaging in very preterm infants was investigated. MATERIALS AND METHODS Conventional and synthetic T1WIs and T2WIs from 111 very preterm infants were acquired at term-equivalent age. Overall image quality and artifacts of the conventional and synthetic images were rated on a 4-point scale. Legibility of anatomic structures and lesion conspicuity were assessed on a binary scale. Synthetic MR volumetry was compared with that generated via MANTiS, which is a neonatal tissue segmentation toolbox based on T2WI. RESULTS Image quality was good or excellent for most conventional and synthetic images. The 2 methods did not differ significantly regarding image quality or diagnostic performance for focal and cystic WM lesions. Dice similarity coefficients had excellent overlap for intracranial volume (97.3%) and brain parenchymal volume (94.3%), and moderate overlap for CSF (75.6%). Bland-Altman plots demonstrated a small systematic bias in all cases (1.7%-5.9%) CONCLUSIONS: Synthetic T1WI and T2WI sequences may complement or replace conventional images in neonatal imaging, and robust synthetic volumetric results are accessible from a clinical workstation in less than 1 minute. Via the above-described methods, volume assessments could be routinely used in daily clinical practice.
Collapse
Affiliation(s)
- T Vanderhasselt
- From the Department of Radiology (T.V., M.N., N.W., G.-J.A., S.R., J.d.M., H.R.), Vrije Universiteit Brussels, Universitair Ziekenhuis Brussels, Brussels, Belgium
| | - M Naeyaert
- From the Department of Radiology (T.V., M.N., N.W., G.-J.A., S.R., J.d.M., H.R.), Vrije Universiteit Brussels, Universitair Ziekenhuis Brussels, Brussels, Belgium
| | - N Watté
- From the Department of Radiology (T.V., M.N., N.W., G.-J.A., S.R., J.d.M., H.R.), Vrije Universiteit Brussels, Universitair Ziekenhuis Brussels, Brussels, Belgium
| | - G-J Allemeersch
- From the Department of Radiology (T.V., M.N., N.W., G.-J.A., S.R., J.d.M., H.R.), Vrije Universiteit Brussels, Universitair Ziekenhuis Brussels, Brussels, Belgium
| | - S Raeymaeckers
- From the Department of Radiology (T.V., M.N., N.W., G.-J.A., S.R., J.d.M., H.R.), Vrije Universiteit Brussels, Universitair Ziekenhuis Brussels, Brussels, Belgium
| | - J Dudink
- Department of Neonatology (J.D.), Wilhelmina Children's Hospital/Utrecht University Medical Center, Utrecht, the Netherlands.,Rudolf Magnus Brain Center (J.D.), Utrecht University Medical Center, Utrecht, the Netherlands
| | - J de Mey
- From the Department of Radiology (T.V., M.N., N.W., G.-J.A., S.R., J.d.M., H.R.), Vrije Universiteit Brussels, Universitair Ziekenhuis Brussels, Brussels, Belgium
| | - H Raeymaekers
- From the Department of Radiology (T.V., M.N., N.W., G.-J.A., S.R., J.d.M., H.R.), Vrije Universiteit Brussels, Universitair Ziekenhuis Brussels, Brussels, Belgium
| |
Collapse
|
7
|
Baburamani AA, Patkee PA, Arichi T, Rutherford MA. New approaches to studying early brain development in Down syndrome. Dev Med Child Neurol 2019; 61:867-879. [PMID: 31102269 PMCID: PMC6618001 DOI: 10.1111/dmcn.14260] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
Down syndrome is the most common genetic developmental disorder in humans and is caused by partial or complete triplication of human chromosome 21 (trisomy 21). It is a complex condition which results in multiple lifelong health problems, including varying degrees of intellectual disability and delays in speech, memory, and learning. As both length and quality of life are improving for individuals with Down syndrome, attention is now being directed to understanding and potentially treating the associated cognitive difficulties and their underlying biological substrates. These have included imaging and postmortem studies which have identified decreased regional brain volumes and histological anomalies that accompany early onset dementia. In addition, advances in genome-wide analysis and Down syndrome mouse models are providing valuable insight into potential targets for intervention that could improve neurogenesis and long-term cognition. As little is known about early brain development in human Down syndrome, we review recent advances in magnetic resonance imaging that allow non-invasive visualization of brain macro- and microstructure, even in utero. It is hoped that together these advances may enable Down syndrome to become one of the first genetic disorders to be targeted by antenatal treatments designed to 'normalize' brain development. WHAT THIS PAPER ADDS: Magnetic resonance imaging can provide non-invasive characterization of early brain development in Down syndrome. Down syndrome mouse models enable study of underlying pathology and potential intervention strategies. Potential therapies could modify brain structure and improve early cognitive levels. Down syndrome may be the first genetic disorder to have targeted therapies which alter antenatal brain development.
Collapse
Affiliation(s)
- Ana A Baburamani
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Prachi A Patkee
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| | - Tomoki Arichi
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK,Department of BioengineeringImperial College LondonLondonUK,Children's NeurosciencesEvelina London Children's HospitalLondonUK
| | - Mary A Rutherford
- Centre for the Developing BrainDepartment of Perinatal Imaging and HealthSchool of Biomedical Engineering & Imaging SciencesKing's College LondonKing's Health PartnersSt Thomas’ HospitalLondonUK
| |
Collapse
|