1
|
Meyer Günderoth M, Bannach-Brown A, Winkler T, Keller J, Zahn RK, Maleitzke T. Calcitonin treatment for osteoarthritis and rheumatoid arthritis - a systematic review and meta-analysis of preclinical data. EFORT Open Rev 2024; 9:600-614. [PMID: 38949173 PMCID: PMC11297409 DOI: 10.1530/eor-23-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Purpose The aim of this study was to investigate the efficacy of calcitonin (CT) in animal models of experimental osteoarthritis (OA) and rheumatoid arthritis (RA), as new stabilized CT formulations are currently being introduced. Methods A comprehensive and systemic literature search was conducted in PubMed/MEDLINE and Embase databases to identify articles with original data on CT treatment of preclinical OA and RA. Methodological quality was assessed using the Systematic Review Centre for Laboratory Animal Experimentation's risk of bias tool for animal intervention studies. To provide summary estimates of efficacy, a meta-analysis was conducted for outcomes reported in four or more studies, using a random-effects model. Subgroup analyses were employed to correct for study specifics. Results Twenty-six studies were ultimately evaluated and data from 16 studies could be analyzed in the meta-analysis, which included the following outcomes: bone mineral density, bone volume, levels of cross-linked C-telopeptide of type I collagen, histopathological arthritis score, and mechanical allodynia. For all considered outcome parameters, CT-treated groups were significantly superior to control groups (P = 0.002; P = 0.01; P < 0.00001; P < 0.00001; P = 0.04). For most outcomes, effect sizes were significantly greater in OA than in RA (P ≤ 0.025). High in-between study heterogeneity was detected. Conclusion There is preclinical evidence for an antioxidant, anti-inflammatory, antinociceptive, cartilage- and bone-protective effect of CT in RA and OA. Given these effects, CT presents a promising agent for the treatment of both diseases, although the potential seems to be greater in OA.
Collapse
Affiliation(s)
- Mara Meyer Günderoth
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Alexandra Bannach-Brown
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, QUEST Center for Responsible Research, Berlin, Germany
| | - Tobias Winkler
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Karl Zahn
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Tazio Maleitzke
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Trauma Orthopaedic Research Copenhagen Hvidovre (TORCH), Department of Orthopaedic Surgery, Copenhagen University Hospital – Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Maleitzke T, Hildebrandt A, Dietrich T, Appelt J, Jahn D, Otto E, Zocholl D, Baranowsky A, Duda GN, Tsitsilonis S, Keller J. The calcitonin receptor protects against bone loss and excessive inflammation in collagen antibody-induced arthritis. iScience 2022; 25:103689. [PMID: 35036874 PMCID: PMC8753130 DOI: 10.1016/j.isci.2021.103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/21/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Pharmacological application of teleost calcitonin (CT) has been shown to exert chondroprotective and anti-resorptive effects in patients with rheumatoid arthritis (RA). However, the role of endogenous CT that signals through the calcitonin receptor (CTR) remains elusive. Collagen II antibody-induced arthritis (CAIA) was stimulated in wild type (WT) and CTR-deficient (Calcr−/−) mice. Animals were monitored over 10 or 48 days. Joint inflammation, cartilage degradation, and bone erosions were assessed by clinical arthritis score, histology, histomorphometry, gene expression analysis, and μ-computed tomography. CAIA was accompanied by elevated systemic CT levels and CTR expression in the articular cartilage. Inflammation, cartilage degradation, and systemic bone loss were more pronounced in Calcr−/− CAIA mice. Expression of various pro-inflammatory, bone resorption, and catabolic cartilage markers were exclusively increased in Calcr−/− CAIA mice. Endogenous CT signaling through the mammalian CTR has the potential to protect against joint inflammation, cartilage degradation, and excessive bone remodeling in experimental RA. CT levels are increased systemically during acute experimental RA CTR is primarily expressed in the superficial articular cartilage layer in CAIA In CAIA CTR-deficiency is associated with increased inflammation marker expression Bone architecture is impaired in experimental RA when CTR signaling is disrupted
Collapse
Affiliation(s)
- Tazio Maleitzke
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10178 Berlin, Germany
| | - Alexander Hildebrandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Tamara Dietrich
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Jessika Appelt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Denise Jahn
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Ellen Otto
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Dario Zocholl
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, 10117 Berlin, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Georg N. Duda
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Serafeim Tsitsilonis
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Johannes Keller
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10178 Berlin, Germany
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
- Corresponding author
| |
Collapse
|
3
|
Srinivasan A, Wong FK, Karponis D. Calcitonin: A useful old friend. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:600-609. [PMID: 33265089 PMCID: PMC7716677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Calcitonin regulates blood calcium levels and possesses certain clinically useful anti-fracture properties. Specifically, it reduces vertebral fractures in postmenopausal osteoporotic women significantly compared to a placebo. Nevertheless, the use of calcitonin has declined over the years and salmon calcitonin is no longer the first-line treatment for many of its indications. Commercial calcitonin only exists in intranasal or injectable preparations, which are less preferable for patients. Efficacy of a potential oral formulation has been under investigation but achieving adequate bioavailability remains a conundrum and the latest phase III trials have not shown promising evidence justifying its use. Associations with cancer have also derailed this treatment option. Furthermore, the rise of bisphosphonates and, more recently, monoclonal antibodies (such as denosumab), has revolutionised the treatment of osteoporotic fractures. Therefore, we are posed with an interesting question: is calcitonin a treatment of the past? This review aims to explore the reasons behind this paradigm shift and outline the potential role of calcitonin in the management of fractures and other conditions in the years to come.
Collapse
Affiliation(s)
| | | | - Dimitrios Karponis
- Imperial College London School of Medicine, UK,Corresponding author: Dimitrios Karponis, South Kensington, London, SW7 2AZ, UK E-mail:
| |
Collapse
|
4
|
Katri A, Dąbrowska A, Löfvall H, Karsdal MA, Andreassen KV, Thudium CS, Henriksen K. A dual amylin and calcitonin receptor agonist inhibits pain behavior and reduces cartilage pathology in an osteoarthritis rat model. Osteoarthritis Cartilage 2019; 27:1339-1346. [PMID: 31176015 DOI: 10.1016/j.joca.2019.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Pain and disability are the main clinical manifestations of osteoarthritis, for which only symptomatic therapies are available. Hence, there is a need for therapies that can simultaneously alter disease progression and provide pain relief. KBP is a dual amylin- and calcitonin-receptor agonist with antiresorptive and chondroprotective properties. In this study we investigated the effect of KBP in a rat model of osteoarthritis. METHODS Medial meniscectomy (MNX) was performed in 39 rats, while 10 underwent sham surgery. Rats were treated with KBP and/or naproxen. Nociception was assessed by mechanical and cold allodynia, weight bearing asymmetry, and burrowing behavior. Blood samples were collected for biomarker measurements, and knees for histology. Cartilage histopathology was evaluated according to the advanced Osteoarthritis Research International (OARSI) score and KBPs in vitro antiresorptive effects were assessed using human osteoclasts cultured on bone. RESULTS The MNX animals displayed an increased nociceptive behavior. Treatment with KBP attenuated the MNX-induced osteoarthritis-associated joint pain. The cartilage histopathology was significantly lower in rats treated with KBP than in MNX animals. Bone and cartilage degradation, assessed by CTX-I and CTX-II plasma levels, were decreased in all KBP-treated groups and KBP potently inhibited bone resorption in vitro. CONCLUSIONS Our study demonstrates the effectiveness of KBP in ameliorating osteoarthritis-associated joint pain and in protecting the articular cartilage, suggesting KBP as a potential drug candidate for osteoarthritis.
Collapse
Affiliation(s)
- A Katri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - A Dąbrowska
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - H Löfvall
- Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund, Sweden.
| | - M A Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - K V Andreassen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - C S Thudium
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| | - K Henriksen
- Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.
| |
Collapse
|
5
|
Synthesis, characterization and in vitro evaluation of a bone targeting delivery system for salmon Calcitonin. Int J Pharm 2010; 394:26-34. [DOI: 10.1016/j.ijpharm.2010.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/05/2010] [Accepted: 04/13/2010] [Indexed: 11/18/2022]
|
6
|
Becklund BR, James BJ, Gagel RF, DeLuca HF. The calcitonin/calcitonin gene related peptide-alpha gene is not required for 1alpha,25-dihydroxyvitamin D3-mediated suppression of experimental autoimmune encephalomyelitis. Arch Biochem Biophys 2009; 488:105-8. [PMID: 19563774 DOI: 10.1016/j.abb.2009.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/23/2009] [Accepted: 06/23/2009] [Indexed: 01/07/2023]
Abstract
The active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), can suppress disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Calcium appears to be a critical component of 1,25(OH)(2)D(3)-mediated suppression of EAE, as complete disease prevention only occurs with a concomitant increase in serum calcium levels. Calcitonin (CT) is a peptide hormone released in response to acute increases in serum calcium, which led us to explore its importance in 1,25(OH)(2)D(3)-mediated suppression of EAE. Previously, we discovered that co-administration of pharmacological doses of CT enhanced the suppressive effect of 1,25(OH)(2)D(3) on EAE, suggesting CT may play a role in 1,25(OH)(2)D(3)-mediated suppression of EAE. To determine the importance of CT in EAE we have utilized a mouse strain in which the gene encoding CT and its alternative splice product, calcitonin gene related peptide-alpha (CGRP), have been deleted. Deletion of the CT/CGRP gene had no effect on EAE progression. Furthermore, treatment with 1,25(OH)(2)D(3) suppressed EAE in CT/CGRP knock-out mice equal to that in wild type mice. Therefore, we conclude that CT is not necessary for 1,25(OH)(2)D(3)-mediated suppression of EAE.
Collapse
Affiliation(s)
- Bryan R Becklund
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
7
|
Enhancement of 1,25-dihydroxyvitamin D3-mediated suppression of experimental autoimmune encephalomyelitis by calcitonin. Proc Natl Acad Sci U S A 2009; 106:5276-81. [PMID: 19282478 DOI: 10.1073/pnas.0813312106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], suppresses disease development in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). However, complete disease prevention only occurs with doses that dramatically elevate serum calcium levels, thus limiting the usefulness of 1,25(OH)(2)D(3) as a potential MS therapeutic agent. Because calcitonin (CT) is believed to be released by hypercalcemia and has been shown to be anti-inflammatory, we examined whether suppression of EAE by 1,25(OH)(2)D(3) could be mediated either in part or entirely by CT. Continuous administration of pharmacological doses of CT did not prevent EAE. However, a combination of CT and a subtherapeutic dose of 1,25(OH)(2)D(3) additively suppressed EAE without causing hypercalcemia. Moreover, CT decreased the dose of 1,25(OH)(2)D(3) required for disease suppression. Our results suggest that CT may be a significant factor but cannot account entirely for 1,25(OH)(2)D(3)-mediated suppression of EAE.
Collapse
|
8
|
Papaioannou NA, Triantafillopoulos IK, Khaldi L, Krallis N, Galanos A, Lyritis GP. Effect of calcitonin in early and late stages of experimentally induced osteoarthritis. A histomorphometric study. Osteoarthritis Cartilage 2007; 15:386-95. [PMID: 17157537 DOI: 10.1016/j.joca.2006.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 10/17/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate both prophylactic and therapeutic roles of salmon calcitonin on the articular cartilage of rabbit's knees. METHODS Right knee instability was produced in 30 New Zealand white rabbits by sectioning the cranial cruciate ligament (CCL). Animals were separated into four groups: placebo prophylactic-stage group (n=6), killed 8 weeks post surgery, calcitonin prophylactic-stage group (n=6), treated immediately after surgery with salmon calcitonin and killed at 8 weeks, placebo therapeutic-stage group (n=9) killed at 16 weeks post surgery and calcitonin therapeutic-stage group (n=9), treated with salmon calcitonin from 8th to 16th week and killed at 16 weeks post surgery. A histomorphometric study was based on the morphological changes of the articular cartilage and subchondral bone (degeneration indexes), as well as the articular cartilage thickness, chondrocytes' arrangement and their metabolic activity (regeneration indexes). RESULTS Calcitonin groups showed smoother articular surface, no or minimal signs of ulceration, smaller osteophytes, and less subchondral cystic formation than placebo groups. Normal distribution of chondrocytes or hypercellularity was noticed in areas of mild osteoarthritic (OA) changes in the calcitonin groups indicating regeneration activity. Periodic Acid Schiff's and Alcian blue staining were negative in the placebo groups while increased absorption in the calcitonin groups revealed high anabolic activity. CONCLUSIONS In prophylactic stages salmon calcitonin seemed to inhibit the progression of osteoarthritis by increasing the layers of hyaline cartilage, restoring the cellular metabolism, and decreasing the volume of osteophytes. In therapeutic stages, the hormone had a healing effect by decreasing the subchondral cysts, regenerating the hyaline cartilage and restoring cellular metabolism. Both macroscopic and histological findings of this study supported the biochemical results of previous studies showing the therapeutic effect of calcitonin on osteoarthritis.
Collapse
Affiliation(s)
- N A Papaioannou
- Laboratory for the Research of the Musculoskeletal System, Medical School, University of Athens, Athens, and Department of Pathology, University Hospital of Larissa, Greece
| | | | | | | | | | | |
Collapse
|
9
|
Becker KL, Nylén ES, White JC, Müller B, Snider RH. Clinical review 167: Procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. J Clin Endocrinol Metab 2004; 89:1512-25. [PMID: 15070906 DOI: 10.1210/jc.2002-021444] [Citation(s) in RCA: 356] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- K L Becker
- Veterans Affairs Medical Center and George Washington University, Washington, D.C. 20422, USA.
| | | | | | | | | |
Collapse
|
10
|
Wiedermann FJ, Kaneider N, Egger P, Tiefenthaler W, Wiedermann CJ, Lindner KH, Schobersberger W. Migration of human monocytes in response to procalcitonin. Crit Care Med 2002; 30:1112-7. [PMID: 12006810 DOI: 10.1097/00003246-200205000-00025] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Circulating serum levels of procalcitonin rise significantly during bacterial infection. Because calcitonin is known to be a monocyte chemoattractant, we investigated whether procalcitonin, a prohormone of calcitonin, also affects leukocyte migration. DESIGN Prospective, controlled in vitro study. SETTING University research laboratories. INTERVENTIONS Forearm venous blood polymorphonuclear neutrophils and monocytes were isolated from healthy human donors. Cell migration was assessed in a blindwell chemotaxis chamber. The distance of migration into filter micropores was measured. To biochemically confirm functional data on cell migration, effects of procalcitonin on cellular levels of cyclic adenosine monophosphate were measured by high-performance liquid chromatography. MEASUREMENTS AND MAIN RESULTS Both procalcitonin and calcitonin elicited dose-dependent migration of monocytes at concentrations from the femtomolar to the micromolar range. Neutrophils did not migrate toward procalcitonin or calcitonin, nor was their oxygen free radical release affected as measured fluorimetrically. Checkerboard analysis of monocyte locomotion revealed procalcitonin-induced migration as true chemotaxis. Pretreatment of monocytes with procalcitonin or calcitonin rapidly deactivated their migratory response to formyl-Met-Leu-Phe, and both also induced homologous deactivation of migration. Procalcitonin elevated levels of cyclic adenosine monophosphate in monocytes. CONCLUSIONS In vitro procalcitonin is a monocyte chemoattractant that deactivates chemotaxis in the presence of additional inflammatory mediators. Procalcitonin stimulates cyclic adenosine monophosphate production in monocytes, suggesting that its action may be specific and comparable with calcitonin, which exerts similar functions.
Collapse
Affiliation(s)
- Franz J Wiedermann
- Department of Anesthesiology and Critical Care Medicine, The Leopold-Franzens-University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kawalski H, Polanowicz U, Jonderko G, Kucharz EJ, Krol W, Klimmek K, Gina AR, Pieczyrak R, Slifirski J, Shani J. Immunological parameters and respiratory functions in patients suffering from atopic bronchial asthma after intravenous treatment with salmon calcitonin. Immunol Lett 1999; 70:15-9. [PMID: 10541047 DOI: 10.1016/s0165-2478(99)00118-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study reports the effect of salmon calcitonin on airway function and peripheral blood parameters in asthmatic subjects. The premise for the study is that calcitonin is given to asthmatics that require systemic corticosteroids as a way to counter problems with calcium balance and osteoporosis, and that it has an immunosuppressive effect. Salmon calcitonin (100 IU) was administered to 18 patients with atopic bronchial asthma, and the following spirometric parameters were evaluated: forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), peak respiratory flow rate (PEFR) and forced expiratory flow rates at 25%, 50% and 75% of the forced vital capacity (FEF25%, FEF50% and FEF75%). Calcitonin significantly decreased the levels of FVC and FEV1 by 20 min after starting the infusion. The effect of 500 mg aminophylline, used as a reference drug in this study, was much more profound, with a significant increase in all investigated parameters. Also, the effect of salmon calcitonin on some immune parameters (white blood cell count, number of eosinophils, serum levels of immunoglobulins IgG, IgM and IgA, and serum levels of lymphocytes subpopulations CD3, CD4, CD8 and CD19) was determined in another group of 30 patients suffering from atopic bronchial asthma. Calcitonin at a dose of 100 IU/day subcutaneously for 3 days did not alter the immune parameters studied, thus rendering it safe for such and similar treatment schedules in a variety of medical conditions.
Collapse
Affiliation(s)
- H Kawalski
- Department of Microbiology and Immunology, Silesian School of Medicine, Zabrze-Rokitnica, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hellio MP, Peschard MJ, Cohen C, Richard M, Vignon E. Calcitonin inhibits phospholipase A2 and collagenase activity of human osteoarthritic chondrocytes. Osteoarthritis Cartilage 1997; 5:121-8. [PMID: 9135823 DOI: 10.1016/s1063-4584(97)80005-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcitonin (CT) is a known potent inhibitor of bone resorption but its effect on cartilage enzymatic degradation has been incompletely studied. Salmon CT, at a concentration of 0, 0.1, 0.25, 0.5, 2.5 and 50 ng/ml, was added at 24 or 72 h to the culture medium of chondrocytes from human osteoarthritic hips and knees. The spontaneous collagenolytic activity, measured using a radiolabeled type II collagen, was inhibited by CT in a dose-dependent manner. However, CT had no effect on the total collagenolytic activity assayed after APMA activation. Stromelysin and plasmin activity, measured by degradation of casein and a synthetic substrate, were also unaffected by CT. Chondrocyte phospholipase A2 activity, assayed using a labeled specific substrate, was decreased by CT. Chondrocyte pre-incubation with CT significantly decreased the cell binding of labeled TNF alpha, but did not affect IL-1 beta cell binding. Attachment of chondrocytes on fibronectin was markedly stimulated by CT, while attachment to type II collagen was not. Significant effects were obtained using at least 2 or 5 ng/ml of CT. CT appears to decrease collagenolytic activity by decreasing its activation and/or increasing its inhibition by tissue inhibitors of metalloproteinases (TIMP). CT might act on osteoarthritic chondrocyte activation via mechanisms such as phospholipase A2 activity, human necrosis factor-alpha or fibronectin receptor expression.
Collapse
Affiliation(s)
- M P Hellio
- Claude Bernard University, Hôpital Edouard Herriot, Lyon, France
| | | | | | | | | |
Collapse
|