1
|
Anorexia Nervosa-What Has Changed in the State of Knowledge about Nutritional Rehabilitation for Patients over the Past 10 Years? A Review of Literature. Nutrients 2021; 13:nu13113819. [PMID: 34836075 PMCID: PMC8619053 DOI: 10.3390/nu13113819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Anorexia nervosa (AN) is a psycho-metabolic disorder with a high risk of somatic complications such as refeeding syndrome (RFS) and carries the highest mortality rate of all psychiatric illnesses. To date, the consensus on the care for patients with AN has been based on recommendations for a combination of alimentation and psychotherapy. It is important to establish an initial caloric intake that will provide weight gain and minimize the risk of complications in the treatment of undernourished patients. Research over the past few years suggests that current treatment recommendations may be too stringent and should be updated. The aim of this paper is to systematize the current reports on nutritional rehabilitation in AN, to present the results of studies on the safe supplementation of patients and its potential impact on improving prognosis and the healing process. This review of literature, from 2011-2021, describes the changing trend in the nutritional protocols used and the research on their efficacy, safety, and long-term effects. In addition, it presents previous reports on the potential benefits of introducing vitamin, pro-and prebiotic and fatty acid supplementation.
Collapse
|
2
|
Sun T, Li Y, Li Y, Li H, Gong Y, Wu J, Ning Y, Ding C, Xu Y. Proteomic Analysis of Copper Toxicity in Human Fungal Pathogen Cryptococcus neoformans. Front Cell Infect Microbiol 2021; 11:662404. [PMID: 34485169 PMCID: PMC8415117 DOI: 10.3389/fcimb.2021.662404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus neoformans is an invasive human fungal pathogen that causes more than 181,000 deaths each year. Studies have demonstrated that pulmonary C. neoformans infection induces innate immune responses involving copper, and copper detoxification in C. neoformans improves its fitness and pathogenicity during pulmonary C. neoformans infection. However, the molecular mechanism by which copper inhibits C. neoformans proliferation is unclear. We used a metallothionein double-knockout C. neoformans mutant that was highly sensitive to copper to demonstrate that exogenous copper ions inhibit fungal cell growth by inducing reactive oxygen species generation. Using liquid chromatography-tandem mass spectrometry, we found that copper down-regulated factors involved in protein translation, but up-regulated proteins involved in ubiquitin-mediated protein degradation. We propose that the down-regulation of protein synthesis and the up-regulation of protein degradation are the main effects of copper toxicity. The ubiquitin modification of total protein and proteasome activity were promoted under copper stress, and inhibition of the proteasome pathway alleviated copper toxicity. Our proteomic analysis sheds new light on the antifungal mechanisms of copper.
Collapse
Affiliation(s)
- Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingxing Li
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Hailong Li
- National Health Commission Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiyi Gong
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Jianqiang Wu
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yating Ning
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingchun Xu
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Hofmann P, Buetikofer C, Bächli E. Hyperregenerative macrocytic anaemia: the role of copper and zinc. BMJ Case Rep 2021; 14:e241028. [PMID: 33853819 PMCID: PMC8054059 DOI: 10.1136/bcr-2020-241028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 11/04/2022] Open
Abstract
In a patient with a history of bariatric surgery, severe copper deficiency presenting with macrocytic hyperregenerative anaemia was diagnosed. Besides the impaired intestinal absorption due to a short bowel syndrome, the enteral zinc supplementation competitively decreased the intestinal copper uptake. Once the zinc supplementation was stopped, enteral copper replacement ensued and normalised haemoglobin levels with decreasing median corpuscular volume were observed during follow-up visits.
Collapse
Affiliation(s)
| | | | - Esther Bächli
- Internal Medicine, Hospital Uster, Uster, Switzerland
| |
Collapse
|
4
|
Rajaswathi K, Jayanthi M, Rajmohan R, Anbazhagan V, Vairaprakash P. Simple admixture of 4-nitrobenzaldehyde and 2,4-dimethylpyrrole for efficient colorimetric sensing of copper(II) ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:308-314. [PMID: 30677599 DOI: 10.1016/j.saa.2019.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 05/25/2023]
Abstract
An easily accessible chemo-probe based on physical mixture of 2,4-dimethylpyrrole and 4-nitrobenzaldehyde has been developed. Based on NMR spectroscopic analysis, catalyst free formation of dipyrromethane was observed in the physical mixture of chemo-probe. The probe is utilized in effective colorimetric sensing of copper(II) ions present in environmental solutions by instantaneous appearance of red colour, even in the co-existence of various metal ions. The lowest detection limit of 2.51 μM for this chemo-probe towards copper(II) sensing is significantly lower than the WHO prescribed level (<30 μM of copper(II) ions) in potable water. The sensing mechanism is explained via rapid formation of bis(dipyrrinato)copper(II) complex, as confirmed by Jobs plot, UV-Vis spectroscopy and IR spectroscopy.
Collapse
Affiliation(s)
- Karnan Rajaswathi
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Muruganandam Jayanthi
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Rajamani Rajmohan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Veerappan Anbazhagan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
5
|
Hanachi M, Dicembre M, Rives-Lange C, Ropers J, Bemer P, Zazzo JF, Poupon J, Dauvergne A, Melchior JC. Micronutrients Deficiencies in 374 Severely Malnourished Anorexia Nervosa Inpatients. Nutrients 2019; 11:nu11040792. [PMID: 30959831 PMCID: PMC6520973 DOI: 10.3390/nu11040792] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction: Anorexia nervosa (AN) is a complex psychiatric disorder, which can lead to specific somatic complications. Undernutrition is a major diagnostic criteria of AN which can be associated with several micronutrients deficiencies. Objectives: This study aimed to determinate the prevalence of micronutrients deficiencies and to compare the differences between the two subtypes of AN (restricting type (AN-R) and binge-eating/purging type (AN-BP)). Methods: We report a large retrospective, monocentric study of patients hospitalized in a highly specialized nutrition unit between January 2011 and August 2017 for severe malnutrition treatment in the context of anorexia nervosa. Results: Three hundred and seventy-four patients (360 (96%) women, 14 (4%) men), age: 31.3 ± 12.9 years, Body Mass Index (BMI): 12.5 ± 1.7 kg/m2 were included; 253 (68%) patients had AN-R subtype while, 121 (32%) had AN-BP. Zinc had the highest deficiency prevalence 64.3%, followed by vitamin D (54.2%), copper (37.1%), selenium (20.5%), vitamin B1 (15%), vitamin B12 (4.7%), and vitamin B9 (8.9%). Patients with AN-BP type had longer disease duration, were older, and had a lower left ventricular ejection fraction (LVEF) (p < 0.001, p = 0.029, p = 0.009), when compared with AN-R type, patients who instead, had significantly higher Alanine Aminotransferase (ALT) and Brain Natriuretic Peptide (BNP) levels (p < 0.001, p < 0.021). In the AN-BP subgroup, as compared to AN-R, lower selenium (p < 0.001) and vitamin B12 plasma concentration (p < 0.036) were observed, whereas lower copper plasma concentration was observed in patients with AN-R type (p < 0.022). No significant differences were observed for zinc, vitamin B9, vitamin D, and vitamin B1 concentrations between the two types of AN patients. Conclusion: Severely malnourished AN patients have many micronutrient deficiencies. Differences between AN subtypes are identified. Micronutrients status of AN patients should be monitored and supplemented to prevent deficiencies related complications and to improve nutritional status. Prospective studies are needed to explore the symptoms and consequences of each deficiency, which can aggravate the prognosis during recovery.
Collapse
Affiliation(s)
- Mouna Hanachi
- Nutrition Unit, Raymond Poincaré University Hospital (Assistance Publique⁻Hôpitaux de Paris), 92380 Garches, France.
- Versailles Saint Quentin-en-Yvelines University, 78180 Montigny-le-Bretonneux, France.
| | - Marika Dicembre
- Nutrition Unit, Raymond Poincaré University Hospital (Assistance Publique⁻Hôpitaux de Paris), 92380 Garches, France.
| | - Claire Rives-Lange
- Nutrition Unit, Georges Pompidou University Hospital (Assistance Publique⁻Hôpitaux de Paris), 75015 Paris, France.
- Paris Descartes University, 75006 Paris, France.
| | - Jacques Ropers
- Clinical Research Unit, Pitié-Salpêtrière University Hospital, (Assistance Publique⁻Hôpitaux de Paris, 75013 Paris, France.
| | - Pauline Bemer
- Nutrition Unit, Raymond Poincaré University Hospital (Assistance Publique⁻Hôpitaux de Paris), 92380 Garches, France.
| | - Jean-Fabien Zazzo
- Nutrition Unit, Raymond Poincaré University Hospital (Assistance Publique⁻Hôpitaux de Paris), 92380 Garches, France.
| | - Joël Poupon
- Laboratory of Biological Toxicology, Saint Louis⁻Lariboisiere, University Hospital Paris France, 75010 Paris, France.
| | - Agnès Dauvergne
- Laboratory of Biochemistry, Beaujon University Hospital (Assistance Publique⁻Hôpitaux de Paris), 92110 Clichy, France.
| | - Jean-Claude Melchior
- Nutrition Unit, Raymond Poincaré University Hospital (Assistance Publique⁻Hôpitaux de Paris), 92380 Garches, France.
- Versailles Saint Quentin-en-Yvelines University, 78180 Montigny-le-Bretonneux, France.
| |
Collapse
|
6
|
The Role of Copper Homeostasis at the Host-Pathogen Axis: From Bacteria to Fungi. Int J Mol Sci 2019; 20:ijms20010175. [PMID: 30621285 PMCID: PMC6337107 DOI: 10.3390/ijms20010175] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 02/01/2023] Open
Abstract
Copper is an essential trace element participating in many vital biological processes, however it becomes a toxic agent when in excess. Thus, precise and tight regulation of copper homeostasis processes, including transport, delivery, storage, detoxification, and efflux machineries, is important, ensuring that only the amount needed to sustain basic biological functions and simultaneously prevent copper toxicity in the cell is maintained. Numerous exciting studies have revealed that copper plays an indispensable role at the microbial pathogen-host axis for entities ranging from pathogenic bacteria to deadly fungal species. Analyses of copper homeostases in bacteria and fungi extensively demonstrate that copper is utilized by the host immune system as an anti-microbial agent. The expression of copper efflux and detoxification from microbial pathogens is induced to counteract the host's copper bombardment, which in turn disrupts these machineries, resulting in the attenuation of microbial survival in host tissue. We hereby review the latest work in copper homeostases in pathogenic bacteria and fungi and focus on the maintenance of a copper balance at the pathogen-host interaction axis.
Collapse
|