1
|
Parés M, Fornaguera C, Vila-Julià F, Oh S, Fan SHY, Tam YK, Comes N, Vidal F, Martí R, Borrós S, Barquinero J. Preclinical Assessment of a Gene-Editing Approach in a Mouse Model of Mitochondrial Neurogastrointestinal Encephalomyopathy. Hum Gene Ther 2021; 32:1210-1223. [PMID: 34498979 DOI: 10.1089/hum.2021.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare disease caused by recessive mutations in the TYMP gene, which encodes the enzyme thymidine phosphorylase (TP). In this study, the efficient integration of a TYMP transgene into introns of the Tymp and Alb loci of hepatocytes in a murine model of MNGIE was achieved by the coordinated delivery and activity of CRISPR/Cas9 and a TYMP cDNA. CRISPR/Cas9 was delivered either as mRNA using lipid nanoparticle (LNP) or polymeric nanoparticle, respectively, or in an AAV2/8 viral vector; the latter was also used to package the TYMP cDNA. Insertion of the cDNA template downstream of the Tymp and Alb promoters ensured transgene expression. The best in vivo results were obtained using LNP carrying the CRISPR/Cas9 mRNAs. Treated mice showed a consistent long-term (1 year) reduction in plasma nucleoside (thymidine and deoxyuridine) levels that correlated with the presence of TYMP mRNA and functional enzyme in liver cells. In mice with an edited Alb locus, the transgene produced a hybrid Alb-hTP protein that was secreted, with supraphysiological levels of TP activity detected in the plasma. Equivalent results were obtained in mice edited at the Tymp locus. Finally, some degree of gene editing was found in animals treated only with AAV vectors containing the DNA templates, in the absence of nucleases, although there was no impact on plasma nucleoside levels. Overall, these results demonstrate the feasibility of liver-directed genome editing in the long-term correction of MNGIE, with several advantages over other methods.
Collapse
Affiliation(s)
- Marta Parés
- Gene and Cell Therapy, Institut de Recerca Hospital Universitari Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Ramon Llull University (URL), Barcelona, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Institut de Recerca Hospital Universitari Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Sejin Oh
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Ramon Llull University (URL), Barcelona, Spain
| | - Steven H Y Fan
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | | | - Francisco Vidal
- Blood and Tissue Bank, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Institut de Recerca Hospital Universitari Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Ramon Llull University (URL), Barcelona, Spain
| | - Jordi Barquinero
- Gene and Cell Therapy, Institut de Recerca Hospital Universitari Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
2
|
Hirano M, Carelli V, De Giorgio R, Pironi L, Accarino A, Cenacchi G, D’Alessandro R, Filosto M, Martí R, Nonino F, Pinna AD, Baldin E, Bax BE, Bolletta A, Bolletta R, Boschetti E, Cescon M, D’Angelo R, Dotti MT, Giordano C, Gramegna LL, Levene M, Lodi R, Mandel H, Morelli MC, Musumeci O, Pugliese A, Scarpelli M, Siniscalchi A, Spinazzola A, Tal G, Torres-Torronteras J, Vignatelli L, Zaidman I, Zoller H, Rinaldi R, Zeviani M. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE International Network. J Inherit Metab Dis 2021; 44:376-387. [PMID: 32898308 PMCID: PMC8399867 DOI: 10.1002/jimd.12300] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disease caused by TYMP mutations and thymidine phosphorylase (TP) deficiency. Thymidine and deoxyuridine accumulate impairing the mitochondrial DNA maintenance and integrity. Clinically, patients show severe and progressive gastrointestinal and neurological manifestations. The onset typically occurs in the second decade of life and mean age at death is 37 years. Signs and symptoms of MNGIE are heterogeneous and confirmatory diagnostic tests are not routinely performed by most laboratories, accounting for common misdiagnosis. Factors predictive of progression and appropriate tests for monitoring are still undefined. Several treatment options showed promising results in restoring the biochemical imbalance of MNGIE. The lack of controlled studies with appropriate follow-up accounts for the limited evidence informing diagnostic and therapeutic choices. The International Consensus Conference (ICC) on MNGIE, held in Bologna, Italy, on 30 March to 31 March 2019, aimed at an evidence-based consensus on diagnosis, prognosis, and treatment of MNGIE among experts, patients, caregivers and other stakeholders involved in caring the condition. The conference was conducted according to the National Institute of Health Consensus Conference methodology. A consensus development panel formulated a set of statements and proposed a research agenda. Specifically, the ICC produced recommendations on: (a) diagnostic pathway; (b) prognosis and the main predictors of disease progression; (c) efficacy and safety of treatments; and (f) research priorities on diagnosis, prognosis, and treatment. The Bologna ICC on diagnosis, management and treatment of MNGIE provided evidence-based guidance for clinicians incorporating patients' values and preferences.
Collapse
Affiliation(s)
- Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, New York
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Roberto De Giorgio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Loris Pironi
- Clinical Nutrition and Metabolism Unit and Center for Chronic Intestinal Failure, Department of Digestive System, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Anna Accarino
- Digestive System Research Unit, University Hospital Vall d’Hebron / Centro de Investigación Biomédica en Red de Enfermeda des Hepáticas y Digestivas (CIBEREHD); Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | | - Massimiliano Filosto
- Center for Neuromuscular Diseases, Unit of Neurology, Azienda Socio Sanitaria Territoriale degli Spedali Civili and University of Brescia, Brescia, Italy
| | - Ramon Martí
- Vall d’Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain
| | - Francesco Nonino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Elisa Baldin
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Bridget Elizabeth Bax
- Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| | | | | | - Elisa Boschetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Roberto D’Angelo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Metropolitana (NeuroMet), - Neurologia AOU S.Orsola-Malpighi, Bologna, Italy
| | - Maria Teresa Dotti
- Neurological and Metabolic Diseases Clinic, Siena Hospital, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Umberto I Policlinic, Rome, Italy
| | - Laura Ludovica Gramegna
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michelle Levene
- Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Hanna Mandel
- Institute of Human Genetics and Inherited Metabolic Disorders, Galilee Medical Center, Nahariya, Israel
| | - Maria Cristina Morelli
- Department for Care of Organ Failures and Transplants, Internal Medicine for the Treatment of Severe Organ Failures, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Olimpia Musumeci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessia Pugliese
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mauro Scarpelli
- Neurology Unit, Department of Neuroscience, Azienda Ospedaliero Universitaria Integrata Verona, Verona, Italy
| | - Antonio Siniscalchi
- Anaesthesiology Intensive Care and Transplantation Unit, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Antonella Spinazzola
- Department of Clinical Movement Neurosciences, Royal Free Campus, University College of London, Queen Square Institute of Neurology, London, UK
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children’s Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Javier Torres-Torronteras
- Vall d’Hebron Research Institute, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Autonomous University of Barcelona, Barcelona, Spain
| | - Luca Vignatelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Irina Zaidman
- Department of Bone Marrow Transplantation, Hadassah University Medical Center, Jerusalem, Israel
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Rita Rinaldi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Interaziendale Metropolitana (NeuroMet), - Neurologia AOU S.Orsola-Malpighi, Bologna, Italy
| | - Massimo Zeviani
- Department of Neurosciences, Veneto Institute of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Bax BE. Mitochondrial neurogastrointestinal encephalomyopathy: approaches to diagnosis and treatment. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2019; 4:1-16. [PMID: 32914088 PMCID: PMC7116056 DOI: 10.20517/jtgg.2020.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease caused by mutations in TYMP, the gene encoding for the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of thymidine and 2’-deoxyuridine and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. MNGIE is characterised by gastrointestinal dysmotility, cachexia, peripheral neuropathy, ophthalmoplegia, ptosis and leukoencephalopathy. The disease is progressively degenerative and leads to death at an average age of 37.6 years. Patients invariably encounter misdiagnoses, diagnostic delays, and non-specific clinical management. Despite its rarity, MNGIE has invoked much interest in the development of therapeutic strategies, mainly because it is one of the few mitochondrial disorders where the molecular abnormality is metabolically and physically accessible to manipulation. This review provides a resume of the current diagnosis and treatment approaches and aims to increase the clinical awareness of MNGIE and thereby facilitate early diagnosis and timely access to treatments, before the development of untreatable and irreversible organ damage.
Collapse
Affiliation(s)
- Bridget E Bax
- Institute of Molecular and Clinical Sciences, St. George's University of London, London, SW17 ORE, UK
| |
Collapse
|
4
|
Pacitti D, Levene M, Garone C, Nirmalananthan N, Bax BE. Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far. Front Genet 2018; 9:669. [PMID: 30627136 PMCID: PMC6309918 DOI: 10.3389/fgene.2018.00669] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare metabolic autosomal recessive disease, caused by mutations in the nuclear gene TYMP which encodes the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of the deoxyribonucleosides thymidine and deoxyuridine, and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. Clinically, MNGIE is characterized by gastrointestinal and neurological manifestations, including cachexia, gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, ophthalmoplegia and ptosis. The disease is progressively degenerative and leads to death at an average age of 37.6 years. As with the vast majority of rare diseases, patients with MNGIE face a number of unmet needs related to diagnostic delays, a lack of approved therapies, and non-specific clinical management. We provide here a comprehensive collation of the available knowledge of MNGIE since the disease was first described 42 years ago. This review includes symptomatology, diagnostic procedures and hurdles, in vitro and in vivo disease models that have enhanced our understanding of the disease pathology, and finally experimental therapeutic approaches under development. The ultimate aim of this review is to increase clinical awareness of MNGIE, thereby reducing diagnostic delay and improving patient access to putative treatments under investigation.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Caterina Garone
- MRC Mitochondrial Biology Unit, Cambridge Biomedical, Cambridge, United Kingdom
| | | | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| |
Collapse
|