1
|
Artiaga JCM, Azarcon CP, Levina FD, Bromeo AJ, Mesina BVQ, Arcinue CA. Considerations in the management of ocular toxoplasmosis in pregnancy: a review of literature. Eye (Lond) 2024; 38:1262-1268. [PMID: 38191658 PMCID: PMC11076467 DOI: 10.1038/s41433-023-02916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Ocular toxoplasmosis is the most common cause of infectious posterior uveitis. Available literature is still conflicting regarding the incidence of recurrence during pregnancy as various calculations were employed in the different published studies. Although earlier reports have suggested a difference in presentation and an increase in severity during pregnancy, newer studies appear to show otherwise. Further diagnostic testing, including serologic and intraocular fluid sampling, may be indicated to increase the diagnostic accuracy in this special population of patients. The management of ocular toxoplasmosis during pregnancy is challenging as the foetus is additionally considered in the choice of treatment. Traditionally preferred anti-toxoplasmosis regimens containing antifolate drugs, such as pyrimethamine and trimethoprim-sulfamethoxazole, cannot be used routinely in pregnant patients, especially during the first trimester. This review includes literature on alternative treatments for ocular toxoplasmosis during pregnancy, including spiramycin and intravitreal treatment options.
Collapse
Affiliation(s)
- Jose Carlo M Artiaga
- Department of Ophthalmology and Visual Sciences, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.
| | - Corrina P Azarcon
- Section of Ophthalmology, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Faye D Levina
- Department of Ophthalmology and Visual Sciences, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | | | - Bryan Vincent Q Mesina
- Department of Ophthalmology and Visual Sciences, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Cheryl A Arcinue
- Department of Ophthalmology and Visual Sciences, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
- Asian Eye Institute, Makati City, Philippines
| |
Collapse
|
2
|
Liu X, Zhang P, Liu Y, Li J, Yang D, Liu Z, Jiang L. Anti- Toxoplasma gondii Effects of Lipopeptide Derivatives of Lycosin-I. Toxins (Basel) 2023; 15:477. [PMID: 37624234 PMCID: PMC10467082 DOI: 10.3390/toxins15080477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Toxoplasmosis, caused by Toxoplasma gondii (T. gondii), is a serious zoonotic parasitic disease. We previously found that Lycosin-I exhibited anti-T. gondii activity, but its serum stability was not good enough. In this study, we aimed to improve the stability and activity of Lycosin-I through fatty acid chain modification, so as to find a better anti-T. gondii drug candidate. The α/ε-amino residues of different lysine residues of Lycosin-I were covalently coupled with lauric acid to obtain eight lipopeptides, namely L-C12, L-C12-1, L-C12-2, L-C12-3, L-C12-4, L-C12-5, L-C12-6, and L-C12-7. Among these eight lipopeptides, L-C12 showed the best activity against T. gondii in vitro in a trypan blue assay. We then conjugated a shorter length fatty chain, aminocaproic acid, at the same modification site of L-C12, namely L-an. The anti-T. gondii effects of Lycosin-I, L-C12 and L-an were evaluated via an invasion assay, proliferation assay and plaque assay in vitro. A mouse model acutely infected with T. gondii tachyzoites was established to evaluate their efficacy in vivo. The serum stability of L-C12 and L-an was improved, and they showed comparable or even better activity than Lycosin-I did in inhibiting the invasion and proliferation of tachyzoites. L-an effectively prolonged the survival time of mice acutely infected with T. gondii. These results suggest that appropriate fatty acid chain modification can improve serum stability and enhance anti-T. gondii effect of Lycosin-I. The lipopeptide derivatives of Lycosin-I have potential as a novel anti-T. gondii drug candidate.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Peng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (P.Z.); (Z.L.)
| | - Yuan Liu
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Jing Li
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Dongqian Yang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (P.Z.); (Z.L.)
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha 410013, China; (X.L.); (Y.L.); (J.L.); (D.Y.)
- China-Africa Research Center of Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha 410013, China
| |
Collapse
|
3
|
Hajj RE, Tawk L, Itani S, Hamie M, Ezzeddine J, El Sabban M, El Hajj H. Toxoplasmosis: Current and Emerging Parasite Druggable Targets. Microorganisms 2021; 9:microorganisms9122531. [PMID: 34946133 PMCID: PMC8707595 DOI: 10.3390/microorganisms9122531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a prevalent disease affecting a wide range of hosts including approximately one-third of the human population. It is caused by the sporozoan parasite Toxoplasma gondii (T. gondii), which instigates a range of symptoms, manifesting as acute and chronic forms and varying from ocular to deleterious congenital or neuro-toxoplasmosis. Toxoplasmosis may cause serious health problems in fetuses, newborns, and immunocompromised patients. Recently, associations between toxoplasmosis and various neuropathies and different types of cancer were documented. In the veterinary sector, toxoplasmosis results in recurring abortions, leading to significant economic losses. Treatment of toxoplasmosis remains intricate and encompasses general antiparasitic and antibacterial drugs. The efficacy of these drugs is hindered by intolerance, side effects, and emergence of parasite resistance. Furthermore, all currently used drugs in the clinic target acute toxoplasmosis, with no or little effect on the chronic form. In this review, we will provide a comprehensive overview on the currently used and emergent drugs and their respective parasitic targets to combat toxoplasmosis. We will also abridge the repurposing of certain drugs, their targets, and highlight future druggable targets to enhance the therapeutic efficacy against toxoplasmosis, hence lessening its burden and potentially alleviating the complications of its associated diseases.
Collapse
Affiliation(s)
- Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107 2809, Lebanon;
| | - Lina Tawk
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Shaymaa Itani
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Jana Ezzeddine
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon;
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
- Correspondence: ; Tel.: +961–1-350000 (ext. 4897)
| |
Collapse
|
4
|
da Silva M, Teixeira C, Gomes P, Borges M. Promising Drug Targets and Compounds with Anti- Toxoplasma gondii Activity. Microorganisms 2021; 9:1960. [PMID: 34576854 PMCID: PMC8471693 DOI: 10.3390/microorganisms9091960] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Toxoplasmosis is a parasitic disease caused by the globally distributed protozoan parasite Toxoplasma gondii, which infects around one-third of the world population. This disease may result in serious complications for fetuses, newborns, and immunocompromised individuals. Current treatment options are old, limited, and possess toxic side effects. Long treatment durations are required since the current therapeutic system lacks efficiency against T. gondii tissue cysts, promoting the establishment of latent infection. This review highlights the most promising drug targets involved in anti-T. gondii drug discovery, including the mitochondrial electron transport chain, microneme secretion pathway, type II fatty acid synthesis, DNA synthesis and replication and, DNA expression as well as others. A description of some of the most promising compounds demonstrating antiparasitic activity, developed over the last decade through drug discovery and drug repurposing, is provided as a means of giving new perspectives for future research in this field.
Collapse
Affiliation(s)
- Marco da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal;
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Margarida Borges
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|