1
|
Abbott AL, Silvestrini M, Topakian R, Golledge J, Brunser AM, de Borst GJ, Harbaugh RE, Doubal FN, Rundek T, Thapar A, Davies AH, Kam A, Wardlaw JM. Optimizing the Definitions of Stroke, Transient Ischemic Attack, and Infarction for Research and Application in Clinical Practice. Front Neurol 2017; 8:537. [PMID: 29104559 PMCID: PMC5654955 DOI: 10.3389/fneur.2017.00537] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Until now, stroke and transient ischemic attack (TIA) have been clinically based terms which describe the presence and duration of characteristic neurological deficits attributable to intrinsic disorders of particular arteries supplying the brain, retina, or (sometimes) the spinal cord. Further, infarction has been pathologically defined as death of neural tissue due to reduced blood supply. Recently, it has been proposed we shift to definitions of stroke and TIA determined by neuroimaging results alone and that neuroimaging findings be equated with infarction. METHODS We examined the scientific validity and clinical implications of these proposals using the existing published literature and our own experience in research and clinical practice. RESULTS We found that the proposals to change to imaging-dominant definitions, as published, are ambiguous and inconsistent. Therefore, they cannot provide the standardization required in research or its application in clinical practice. Further, we found that the proposals are scientifically incorrect because neuroimaging findings do not always correlate with the clinical status or the presence of infarction. In addition, we found that attempts to use the proposals are disrupting research, are otherwise clinically unhelpful and do not solve the problems they were proposed to solve. CONCLUSION We advise that the proposals must not be accepted. In particular, we explain why the clinical focus of the definitions of stroke and TIA should be retained with continued sub-classification of these syndromes depending neuroimaging results (with or without other information) and that infarction should remain a pathological term. We outline ways the established clinically based definitions of stroke and TIA, and use of them, may be improved to encourage better patient outcomes in the modern era.
Collapse
Affiliation(s)
- Anne L. Abbott
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- The Neurology Department, The Alfred Hospital, Melbourne, VIC, Australia
| | | | - Raffi Topakian
- Department of Neurology, Academic Teaching Hospital Wels-Grieskirchen, Wels, Austria
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia
| | - Alejandro M. Brunser
- Cerebrovascular Program, Neurology Service, Department of Medicine, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana – Universidad del Desarrollo, Santiago, Chile
| | - Gert J. de Borst
- Department of Vascular Surgery, University Medical Centre of Utrecht, Utrecht, Netherlands
| | - Robert E. Harbaugh
- Department of Neurosurgery, Penn State University, State College, PA, United States
| | - Fergus N. Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Medicine, Elderly Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, Miami, FL, United States
| | - Ankur Thapar
- Imperial College Healthcare NHS Trust, London, United Kingdom
- Imperial College, London, United Kingdom
| | - Alun H. Davies
- Academic Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College School of Medicine, Charing Cross Hospital, London, United Kingdom
| | - Anthony Kam
- Department of Radiology, Alfred Health, Melbourne, VIC, Australia
| | - Joanna M. Wardlaw
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences, UK Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Yannes M, Frabizzio JV, Shah QA. Reversal of CT hypodensity after acute ischemic stroke. JOURNAL OF VASCULAR AND INTERVENTIONAL NEUROLOGY 2013; 6:10-14. [PMID: 23826437 PMCID: PMC3693996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED We report a man admitted to the hospital after sustaining an ischemic stroke, with a return to isodensity on repeat computed tomography (CT) scan noted at day 9 of his hospital stay. This finding, known as the "fogging effect," has never been noted so early in a patient's course on CT imaging. ABBREVIATIONS CTcomputed tomographyMRImagnetic resonance imaging.
Collapse
|
3
|
Rekik I, Allassonnière S, Carpenter TK, Wardlaw JM. Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal. Neuroimage Clin 2012; 1:164-78. [PMID: 24179749 PMCID: PMC3757728 DOI: 10.1016/j.nicl.2012.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/30/2022]
Abstract
Over the last 15 years, basic thresholding techniques in combination with standard statistical correlation-based data analysis tools have been widely used to investigate different aspects of evolution of acute or subacute to late stage ischemic stroke in both human and animal data. Yet, a wave of biology-dependent and imaging-dependent issues is still untackled pointing towards the key question: "how does an ischemic stroke evolve?" Paving the way for potential answers to this question, both magnetic resonance (MRI) and CT (computed tomography) images have been used to visualize the lesion extent, either with or without spatial distinction between dead and salvageable tissue. Combining diffusion and perfusion imaging modalities may provide the possibility of predicting further tissue recovery or eventual necrosis. Going beyond these basic thresholding techniques, in this critical appraisal, we explore different semi-automatic or fully automatic 2D/3D medical image analysis methods and mathematical models applied to human, animal (rats/rodents) and/or synthetic ischemic stroke to tackle one of the following three problems: (1) segmentation of infarcted and/or salvageable (also called penumbral) tissue, (2) prediction of final ischemic tissue fate (death or recovery) and (3) dynamic simulation of the lesion core and/or penumbra evolution. To highlight the key features in the reviewed segmentation and prediction methods, we propose a common categorization pattern. We also emphasize some key aspects of the methods such as the imaging modalities required to build and test the presented approach, the number of patients/animals or synthetic samples, the use of external user interaction and the methods of assessment (clinical or imaging-based). Furthermore, we investigate how any key difficulties, posed by the evolution of stroke such as swelling or reperfusion, were detected (or not) by each method. In the absence of any imaging-based macroscopic dynamic model applied to ischemic stroke, we have insights into relevant microscopic dynamic models simulating the evolution of brain ischemia in the hope to further promising and challenging 4D imaging-based dynamic models. By depicting the major pitfalls and the advanced aspects of the different reviewed methods, we present an overall critique of their performances and concluded our discussion by suggesting some recommendations for future research work focusing on one or more of the three addressed problems.
Collapse
Affiliation(s)
- Islem Rekik
- BRIC, Edinburgh University, Department of Clinical Neurosciences, UK
- CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau France
| | | | | | - Joanna M. Wardlaw
- BRIC, Edinburgh University, Department of Clinical Neurosciences, UK
| |
Collapse
|