1
|
Mathew DJ, Sivak JM. Lipid mediators in glaucoma: Unraveling their diverse roles and untapped therapeutic potential. Prostaglandins Other Lipid Mediat 2024; 171:106815. [PMID: 38280539 DOI: 10.1016/j.prostaglandins.2024.106815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Glaucoma is a complex neurodegenerative disease characterized by optic nerve damage and visual field loss, and remains a leading cause of irreversible blindness. Elevated intraocular pressure (IOP) is a critical risk factor that requires effective management. Emerging research underscores dual roles of bioactive lipid mediators in both IOP regulation, and the modulation of neurodegeneration and neuroinflammation in glaucoma. Bioactive lipids, encompassing eicosanoids, specialized pro-resolving mediators (SPMs), sphingolipids, and endocannabinoids, have emerged as crucial players in these processes, orchestrating inflammation and diverse effects on aqueous humor dynamics and tissue remodeling. Perturbations in these lipid mediators contribute to retinal ganglion cell loss, vascular dysfunction, oxidative stress, and neuroinflammation. Glaucoma management primarily targets IOP reduction via pharmacological agents and surgical interventions, with prostaglandin analogues at the forefront. Intriguingly, additional lipid mediators offer promise in attenuating inflammation and providing neuroprotection. Here we explore these pathways to shed light on their intricate roles, and to unveil novel therapeutic avenues for glaucoma management.
Collapse
Affiliation(s)
- D J Mathew
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada
| | - J M Sivak
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Department of Ophthalmology and Vision Science, University of Toronto School of Medicine, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, Canada.
| |
Collapse
|
2
|
Aksar AT, Yuksel N, Gok M, Cekmen M, Caglar Y. Neuroprotective effect of edaravone in experimental glaucoma model in rats: a immunofluorescence and biochemical analysis. Int J Ophthalmol 2015; 8:239-44. [PMID: 25938034 DOI: 10.3980/j.issn.2222-3959.2015.02.05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/02/2014] [Indexed: 11/02/2022] Open
Abstract
AIM To evaluate the neuroprotective activity of systemically administered edaravone in early and late stage of experimental glaucoma in rats. METHODS In this study, 60 Wistar albino rats were used. Experimental glaucoma model was created by injecting hyaluronic acid to the anterior chamber once a week for 6wk in 46 of 60 subjects. Fourteen subjects without any medication were included as control group. Edaravone administered intraperitoneally 3 mg/kg/d to the 15 of 30 subjects starting at the onset of glaucoma induction and also administered intraperitoneally 3 mg/kg/d to the other 15 subjects starting at three weeks after the onset of glaucoma induction. The other 16 subjects who underwent glaucoma induction was administered any therapy. Retinal ganglion cells (RGCs) have been marked with dextran tetramethylrhodamine (DTMR) retrograde at the end of the sixth week and after 48h, subjects were sacrificed by the method of cardiac perfusion. Alive RGC density was assessed in the whole-mount retina. Whole-mount retinal tissues homogenized and nitric oxide (NO), malondialdehyde (MDA) and total antioxidant capacity (TAC) values were measured biochemically. RESULTS RGCs counted with Image-Pro Plus program, in the treatment group were found to be statistically significantly protected, compared to the glaucoma group (Bonferroni, P<0.05). The neuroprotective activity of edaravone was found to be more influential by administration at the start of the glaucoma process. Statistically significant lower NO levels were determined in the glaucoma group comparing treatment groups (Bonferroni, P<0.05). MDA levels were found to be highest in untreated glaucoma group, TAC levels were found to be lower in the glaucoma induction groups than the control group (Bonferroni, P<0.05). CONCLUSION Systemic administration of Edaravone in experimental glaucoma showed potent neuroprotective activity. The role of oxidative stress causing RGC damage in glaucoma was supported by this study results.
Collapse
Affiliation(s)
- Arzu Toruk Aksar
- Department of Ophthalmology, Kocaeli University Faculty of Medicine, Kocaeli 41200, Turkey
| | - Nursen Yuksel
- Department of Ophthalmology, Kocaeli University Faculty of Medicine, Kocaeli 41200, Turkey
| | - Mustafa Gok
- Department of Ophthalmology, Ministry of Health-Ordu University Research and Training Hospital, Ordu 52000, Turkey
| | - Mustafa Cekmen
- Department of Biochemistry, Kocaeli University Faculty of Medicine, Kocaeli 41200, Turkey
| | - Yusuf Caglar
- Department of Ophthalmology, Kocaeli University Faculty of Medicine, Kocaeli 41200, Turkey
| |
Collapse
|
3
|
Siu AW, Shan SW, Li KK, Lam HY, Fung MY, Li KK, To CH, Do CW. Glutathione attenuates nitric oxide-induced retinal lipid and protein changes. Ophthalmic Physiol Opt 2015; 35:135-46. [DOI: 10.1111/opo.12198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/30/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew W. Siu
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Sze Wan Shan
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - King Kit Li
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Hiu Yan Lam
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Man Yee Fung
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Ka Ki Li
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| | - Chi Ho To
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou China
| | - Chi Wai Do
- Laboratory of Experimental Optometry; School of Optometry; The Hong Kong Polytechnic University; Hong Kong China
| |
Collapse
|
4
|
Wierzbowska J, Wojtkiewicz S, Zbieć A, Wierzbowski R, Liebert A, Maniewski R. Prolonged postocclusive hyperemia response in patients with normal-tension glaucoma. Med Sci Monit 2014; 20:2607-16. [PMID: 25502623 PMCID: PMC4266367 DOI: 10.12659/msm.891069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background It is believed that endothelial dysfunction may be a link between systemic and ocular dysregulation in glaucoma. The aim of this study was to evaluate peripheral vascular reactive hyperemia in response to occlusion test and to correlate peripheral vascular findings with retrobulbar hemodynamics parameters in patients with normal-tension glaucoma. Material/Methods Forty-eight patients with normal-tension glaucoma (mean age 58.1 years, 38 women) and 40 control subjects (mean age 54.1 years, 36 women) were subjected to a brachial arterial occlusion test and color Doppler imaging (LOGIQ 9, GE Medical Systems) of the retrobulbar arteries. Finger hyperemia was assessed by using a 2-channel laser Doppler flowmeter (MBF-3D, Moor Instruments, Ltd.). Time parameters (time to peak flow, half-time of hyperemia, time of recovery) and amplitude parameters (maximum hyperemia response, biological zero) of the post-occlusive reactive hyperemia signal pattern as well as velocities and resistance index of the ophthalmic, central retinal, and short posterior ciliary arteries were evaluated and compared between study groups. Results In glaucoma patients, time to peak flow and half-time of hyperemia were significantly longer (21.4 vs. 12.0 s, p=0.02 and 74.1 vs. 44.2 s, p=0.03, respectively) and biological zero was significantly lower (2.4 vs. 3.2, p=0.01) comparing with healthy subjects. In glaucoma patients, peak-systolic and end-diastolic velocities of central retinal artery were significantly lower (12.8 vs.14.1, p=0.03 and 3.9 vs. 4.7, p=0.01, respectively) and resistance index of this artery was significantly higher (0.69 vs. 0.67, p=0.03) compared to controls. In the glaucoma group, maximum hyperemic response was negatively correlated with the resistance index of temporal short posterior ciliary arteries (r=−0.4, p=0.01), whereas in the control group half-time of hyperemia was negatively correlated with end-diastolic velocity of the central retinal artery (r=−0.3, p=0.03). Conclusions Arterial occlusion test elicited a prolonged systemic hyperemia response in patients with glaucoma as compared with healthy subjects. Retrobulbar blood flow alterations in glaucoma patients may be related to systemic vascular dysregulation.
Collapse
Affiliation(s)
- Joanna Wierzbowska
- Department of Ophthalmology, Military Institute of Medicine, Warsaw, Poland
| | - Stanisław Wojtkiewicz
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Zbieć
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Wierzbowski
- Department of Cardiology, Military Institute of Medicine, Warsaw, Poland
| | - Adam Liebert
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Roman Maniewski
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Abstract
Normal tension glaucoma (NTG) is a progressive optic neuropathy that mimics primary open-angle glaucoma, but lacks the findings of elevated intraocular pressure or other mitigating factors that can lead to optic neuropathy. The present review summarized the causes, genetics, and mechanisms underlying NTG in both animal models and human patients. We also proposed that the neurovascular unit is a therapeutic target for NTG management.
Collapse
Affiliation(s)
- Xue-Song Mi
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China ; Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ti-Fei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, People's Republic of China ; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kwok-Fai So
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China ; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China ; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Vapaatalo H, Kotikoski H, Oksala O. Role of nitric oxide in the regulation of intraocular pressure: a possibility for glaucoma treatment. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Alexandrescu C, Dascalu AM, Mitulescu C, Panca A, Pascu R, Ciuluvica R, Potop V, Voinea LM. Evidence-based pathophysiology of glaucoma. MAEDICA 2010; 5:207-213. [PMID: 21977154 PMCID: PMC3177542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
8
|
Abstract
Glaucoma is a group of heterogeneous optic neuropathies with complex genetic basis. Among the three principle subtypes of glaucoma, primary open angle glaucoma (POAG) occurs most frequently. Till date, 25 loci have been found to be linked to POAG. However, only three underlying genes (Myocilin, Optineurin and WDR36) have been identified. In addition, at least 30 other genes have been reported to be associated with POAG. Despite strong genetic influence in POAG pathogenesis, only a small part of the disease can be explained in terms of genetic aberration. Current concepts of glaucoma pathogenesis suggest it to be a neurodegenerative disorder which is triggered by different factors including mechanical stress due to intra-ocular pressure, reduced blood flow to retina, reperfusion injury, oxidative stress, glutamate excitotoxicity, and aberrant immune response. Here we present a mechanistic overview of potential pathways and crosstalk between them operating in POAG pathogenesis.
Collapse
Affiliation(s)
- Kunal Ray
- Molecular and Human Genetic Division, Indian Institute of Chemical Biology (a unit of CSIR), Kolkata, India.
| | | |
Collapse
|
9
|
Mozaffarieh M, Grieshaber M, Orgül S, Flammer J. The Potential Value of Natural Antioxidative Treatment in Glaucoma. Surv Ophthalmol 2008; 53:479-505. [DOI: 10.1016/j.survophthal.2008.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Abstract
The optic nerve head, although part of the central nervous system, lacks classical blood-brain barrier properties. The tissue of Elschnig does not totally separate the optic nerve head from fenestrated peripapillary choriocapillaries. The microvessels in the prelaminar region of the optic nerve head have less effective barriers than those in the laminar or retrolaminar regions. In glaucoma, the blood-brain barrier in the optic nerve head may even be weaker. Incomplete blood-brain barrier renders circulating molecules, such as endothelin-1 (ET-1), direct access to smooth vascular muscle cells and pericytes both in the prelaminar part of the optic nerve head and to adjacent retinal tissue. This potentially leads to some vasoconstriction as observed in the peri-papillary retinal vessel in glaucoma patients. In extreme situations, this may provoke retinal vein occlusion. The direct access of these molecules also influences the barrier function. If, simultaneously, ET-1 reduces endothelial tight-junctions and matrix-metalloproteinase (MMP)-9 degrades the basement membrane, not only macromolecules but even red blood cells may cross the blood-brain barrier and lead to what is clinically observed as optic disk hemorrhages.
Collapse
|
11
|
Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol 2008; 52 Suppl 2:S144-54. [PMID: 17998040 DOI: 10.1016/j.survophthal.2007.08.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The need of blood flow to different organs varies rapidly over time which is why there is sophisticated local regulation of blood flow. The term dysregulation simply means that blood flow is not properly adapted to this need. Dysregulative mechanisms can lead to an over- or underperfusion. A steady overperfusion may be less critical for long-term damage. A constant underperfusion, however, can lead to some tissue atrophy or in extreme situations to infarction. Unstable perfusion (underperfusion followed by reperfusion) leads to oxidative stress. There are a number of causes that lead to local or systemic vascular dysregulation. Systemic dysregulation can be primary or secondary of nature. A secondary dysregulation is due to other autoimmune diseases such as rheumatoid arthritis, giant cell arteritis, systemic lupus erythematodes, multiple sclerosis, colitis ulcerosa, or Crohns disease. Patients with a secondary vascular dysregulation normally have a high level of circulating endothelin-1 (ET-1). This increased level of ET-1 leads to a reduction of blood flow both in the choroid and the optic nerve head but has little influence on autoregulation. In contrast, primary vascular dysregulation has little influence on baseline ocular blood flow but interferes with autoregulation. This, in turn, leads to unstable oxygen supply, which seems to be a relevant component in the pathogenesis of glaucomatous optic neuropathy.
Collapse
|
12
|
Pechere-Bertschi A, Sunaric-Megevand G, Haefliger I, Panarello F, Maillard M, Burnier M. Renal sodium handling in patients with normal pressure glaucoma. Clin Sci (Lond) 2007; 112:337-44. [PMID: 17014421 DOI: 10.1042/cs20060082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Low BP (blood pressure) is a recognized risk factor for some patients with NPG (normal pressure glaucoma). We have shown previously that patients with orthostasis have impaired circadian renal handling of sodium, which may contribute to the low BP. Therefore the aim of the present study was to examine the renal handling of sodium, the circadian variations in BP and the neurohormonal response to an orthostatic test in a selected subpopulation of 18 patients with NPG with vasospastic and orthostatic symptoms, and in 24 healthy control subjects. The variations in BP and renal tubular sodium handling were evaluated using 24 h ambulatory BP recordings, 24 h urine collections and determination of endogenous lithium clearance as a marker of proximal sodium reabsorption. The neurohormonal and BP responses to changes in posture were also determined in a 30 min orthostatic test. This selected group of patients with NPG had lower 24 h ambulatory BPs (P<0.001), and a more pronounced fall in BP when assuming an upright position (P<0.001) compared with controls. FE(Li) (fractional excretion of lithium) was higher in patients with NPG than controls during the day (36.6+/-21.8 compared with 20.4+/-8.7% respectively; P<0.01; values are means+/-S.D.) as well as during the night (38.8+/-41.9 compared with 19.7+/-10.8% respectively; P<0.02), suggesting a reduced reabsorption of sodium in the proximal tubule. This was compensated for by an increased distal reabsorption of sodium in patients with NPG (P<0.01). These data demonstrate that patients with vasospastic NPG have a high excretion of lithium, suggesting reduced sodium reabsorption in the proximal tubule, in spite of a low BP. The abnormal renal sodium handling might contribute to the maintenance of arterial hypotension and progression of the optic nerve damage in these patients.
Collapse
Affiliation(s)
- Antoinette Pechere-Bertschi
- Medical Policlinic and Division of Endocrinology, Diabetology and Nutrition, University Hospital, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
13
|
Kocak H, Ly J, Chan CT. Improvement in open-angle glaucoma by nocturnal home haemodialysis. Nephrol Dial Transplant 2006; 21:2647-9. [PMID: 16627614 DOI: 10.1093/ndt/gfl153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Huseyin Kocak
- Department of Medicine, Division of Nephrology, Akdeniz University School of Medicine Hospital, Antalya, Turkey
| | | | | |
Collapse
|