1
|
Hage A, Knoeri J, Leveziel L, Majoulet A, Buffault J, Labbé A, Baudouin C. [From ocular itching to eye rubbing: a review of the literature]. J Fr Ophtalmol 2023; 46:173-184. [PMID: 36635208 DOI: 10.1016/j.jfo.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/11/2023]
Abstract
Ocular itching and eye rubbing are frequent complaints in an ophthalmology practice. Numerous studies address the consequences of eye rubbing, such as keratoconus. However, there are few studies concerning the pathophysiology of itching, its transmission pathways, or its interactions with eye rubbing. Through this literature review, we will address the various clinical, physiological and therapeutic aspects of this pair of symptoms with a variety of ocular consequences. We will then describe the state of the art in itching and scratching in dermatology, in order to draw a parallel between these two vicious cycles. A better understanding of the pathophysiology of ocular itching and eye rubbing, as well as new studies based on dermatological data, might allow more appropriate clinical management of our patients and their symptoms.
Collapse
Affiliation(s)
- A Hage
- Department of Ophthalmology III, National Hospital Centre for Ophthalmology Quinze-Vingts, IHU FOReSIGHT, Service 3-Pr Christophe Baudouin, 28, rue de Charenton, 75012, Paris, France.
| | - J Knoeri
- Department of Ophthalmology V, NATIONAL Hospital Centre for Ophthalmology Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012, Paris, France
| | - L Leveziel
- Department of Ophthalmology V, NATIONAL Hospital Centre for Ophthalmology Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012, Paris, France
| | - A Majoulet
- Department of Ophthalmology III, National Hospital Centre for Ophthalmology Quinze-Vingts, IHU FOReSIGHT, Service 3-Pr Christophe Baudouin, 28, rue de Charenton, 75012, Paris, France
| | - J Buffault
- Department of Ophthalmology III, National Hospital Centre for Ophthalmology Quinze-Vingts, IHU FOReSIGHT, Service 3-Pr Christophe Baudouin, 28, rue de Charenton, 75012, Paris, France
| | - A Labbé
- Department of Ophthalmology III, National Hospital Centre for Ophthalmology Quinze-Vingts, IHU FOReSIGHT, Service 3-Pr Christophe Baudouin, 28, rue de Charenton, 75012, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, Université de Versailles Saint-Quentin en Yvellines, 9, avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France; Sorbonne Université, inserm, CNRS, Institut de la Vision, 17, rue Moreau, 75012, Paris, France
| | - C Baudouin
- Department of Ophthalmology III, National Hospital Centre for Ophthalmology Quinze-Vingts, IHU FOReSIGHT, Service 3-Pr Christophe Baudouin, 28, rue de Charenton, 75012, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, Université de Versailles Saint-Quentin en Yvellines, 9, avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France; Sorbonne Université, inserm, CNRS, Institut de la Vision, 17, rue Moreau, 75012, Paris, France
| |
Collapse
|
2
|
Hydrostatic pressure promotes migration and filamin-A activation in fibroblasts with increased p38 phosphorylation and TGF-β production. Biochem Biophys Res Commun 2021; 568:15-22. [PMID: 34174537 DOI: 10.1016/j.bbrc.2021.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022]
Abstract
Fibroblast migration is closely regulated by the mechanical characteristics in surrounding microenvironment. While increased interstitial hydrostatic pressure (HP) is a hallmark in many pathological and physiological conditions, little is known about how the HP affects fibroblast motility. Using cell-culture chips with elevated HP conditions, we showed that 20 cmH2O HP significantly accelerated fibroblast migration. The HP-induced migration acceleration was dependent on the augmentation of transforming growth factor-β1, and correlated with the activation of filamin A via the phosphorylation of p38 mitogen-activated protein kinase. Our results suggest that interstitial HP elevation associated with various pathological states could significantly regulate fibroblast migration.
Collapse
|
3
|
Nafian F, Kamali Doust Azad B, Yazdani S, Rasaee MJ, Daftarian N. A lab-on-a-chip model of glaucoma. Brain Behav 2020; 10:e01799. [PMID: 32803874 PMCID: PMC7559618 DOI: 10.1002/brb3.1799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/14/2020] [Accepted: 07/28/2020] [Indexed: 01/13/2023] Open
Abstract
AIMS We developed a glaucoma-on-a-chip model to evaluate the viability of retinal ganglion cells (RGCs) against high pressure and the potential effect of neuroprotection. METHODS A three-layered chip consisting of interconnecting microchannels and culture wells was designed and fabricated from poly-methyl methacrylate sheets. The bottom surface of the wells was modified by air plasma and coated with different membranes to provide a suitable extracellular microenvironment. RGCs were purified from postnatal Wistar rats by magnetic assisted cell sorting up to 70% and characterized by flow cytometry and immunocytochemistry. The cultured RGCs were exposed to normal (15 mmHg) or elevated pressure (33 mmHg) for 6, 12, 24, 36, and 48 hr, with and without adding brain-derived neurotrophic factor (BDNF) or a novel BDNF mimetic (RNYK). RESULTS Multiple inlet ports allow culture media and gas into the wells under elevated hydrostatic pressure. PDL/laminin formed the best supporting membrane. RGC survival rates were 85%, 78%, 70%, 67%, and 61% under normal pressure versus 40%, 22%, 18%, 12%, and 10% under high pressure at 6, 12, 24, 36, and 48 hr, respectively. BDNF and RNYK separately reduced RGC death rates about twofold under both normal and elevated pressures. CONCLUSION This model recapitulated the effects of elevated pressure over relatively short time periods and demonstrated the neuroprotective effects of BDNF and RNYK.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Kamali Doust Azad
- Department of Electronics, School of Electrical and Computer Engineering, Tehran University, Tehran, Iran
| | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narsis Daftarian
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Dai M, Zhang Q, Zheng Z, Wang J. Retinal ganglion cell-conditioned medium and surrounding pressure alters gene expression and differentiation of rat retinal progenitor cells. Mol Med Rep 2018; 17:7177-7183. [PMID: 29568879 PMCID: PMC5928676 DOI: 10.3892/mmr.2018.8738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Loss of retinal ganglion cells is implicated in glaucoma and high intraocular pressure. Factors that affect the differentiation of retinal progenitor cells into retinal ganglion cells remain unclear. The present study aimed to investigate the effects of retinal ganglion cell‑conditioned medium on gene expression and differentiation in retinal progenitor cells, and the effects of surrounding pressure on the survival and differentiation of retinal progenitor cells. Retinal progenitor cells and retinal ganglion cells were isolated from rats. Immunofluorescence staining of Nestin and Thy1 was performed to identify rat retinal progenitor cells and retinal ganglion cells, respectively. Retinal progenitor cells and ganglion cells were cultured for 48 h under surrounding pressure of 0, 20, 40, 60 and 80 mmHg. Cellular apoptosis was detected using a caspase‑3 assay kit. In addition, the culture supernatant of rat retinal ganglion cells was collected. Retinal progenitor cells were cultured in the presence or absence of retinal ganglion‑conditioned medium for 72 h under normal pressure. Gene expression of Nestin, paired box protein 6 (PAX6), Thy1 and brain‑specific homeobox/POU domain protein 3 (Brn‑3) in retinal progenitor cells was detected by reverse transcription‑quantitative polymerase chain reaction. Retinal progenitor cells were cultured in retinal ganglion‑conditioned medium for 72 h under surrounding pressure of 0 and 40 mmHg, respectively, and flow cytometry was utilized to evaluate the effects of pressure on the differentiation of retinal progenitor cells into retinal ganglion cells. The results demonstrated that isolated retinal progenitor cells were Nestin‑positive and retinal ganglion cells were Thy1‑positive, suggesting successful isolation. The activity of caspase‑3 increased in retinal progenitor cells and retinal ganglion cells in a pressure‑dependent manner. When the surrounding pressure reached 40, 60 and 80 mmHg, the activity of caspase‑3 in retinal progenitor cells and ganglion cells increased significantly compared with cells that were not under pressure. Compared with retinal progenitor cells cultured without ganglion‑conditioned medium, those cultured with ganglion‑conditioned medium had significantly decreased expression levels of Nestin and PAX6, and increased expression levels of Thy1 and Brn3. Compared with 0 mmHg pressure, retinal progenitor cells cultured in ganglion‑conditioned medium under 40 mmHg pressure had increased percentages of Thy1‑positive cells. In conclusion, the apoptosis of rat retinal progenitor cells and retinal ganglion cells was pressure‑dependent. Retinal ganglion cell‑conditioned medium increased the differentiation of retinal progenitor cells into retinal ganglion‑like cells, and the differentiation increased as surrounding pressure increased. Current study provides insights that may contribute to the efforts of developing a treatment for glaucoma.
Collapse
Affiliation(s)
- Min Dai
- Department of Ophthalmology, Second People's Hospital of Yunnan Province, Kunming, Yunan 650021, P.R. China
| | - Qing Zhang
- Department of Ophthalmology, Second People's Hospital of Yunnan Province, Kunming, Yunan 650021, P.R. China
| | - Zhikun Zheng
- Department of Ophthalmology, Second People's Hospital of Yunnan Province, Kunming, Yunan 650021, P.R. China
| | - Jianzhou Wang
- Department of Ophthalmology, Yan'an Hospital, Kunming, Yunan 650051, P.R. China
| |
Collapse
|
5
|
Tworkoski E, Glucksberg MR, Johnson M. The effect of the rate of hydrostatic pressure depressurization on cells in culture. PLoS One 2018; 13:e0189890. [PMID: 29315329 PMCID: PMC5760025 DOI: 10.1371/journal.pone.0189890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023] Open
Abstract
Changes in hydrostatic pressure, at levels as low as 10 mm Hg, have been reported in some studies to alter cell function in vitro; however, other studies have found no detectable changes using similar methodologies. We here investigate the hypothesis that the rate of depressurization, rather than elevated hydrostatic pressure itself, may be responsible for these reported changes. Hydrostatic pressure (100 mm Hg above atmospheric pressure) was applied to bovine aortic endothelial cells (BAECs) and PC12 neuronal cells using pressurized gas for periods ranging from 3 hours to 9 days, and then the system was either slowly (~30 minutes) or rapidly (~5 seconds) depressurized. Cell viability, apoptosis, proliferation, and F-actin distribution were then assayed. Our results did not show significant differences between rapidly and slowly depressurized cells that would explain differences previously reported in the literature. Moreover, we found no detectable effect of elevated hydrostatic pressure (with slow depressurization) on any measured variables. Our results do not confirm the findings of other groups that modest increases in hydrostatic pressure affect cell function, but we are not able to explain their findings.
Collapse
Affiliation(s)
- Ellen Tworkoski
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Matthew R. Glucksberg
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Mark Johnson
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Ophthalmology, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
6
|
Paula JS, O'Brien C, Stamer WD. Life under pressure: The role of ocular cribriform cells in preventing glaucoma. Exp Eye Res 2016; 151:150-9. [PMID: 27567558 DOI: 10.1016/j.exer.2016.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 02/08/2023]
Abstract
Primary open-angle glaucoma is a multifactorial blinding disease often impacting the two pressure-sensitive regions of the eye: the conventional outflow pathway and the optic nerve head (ONH). The connective tissues that span these two openings in the globe are the trabecular meshwork of the conventional outflow pathway and the lamina cribrosa of the ONH. Resident cribiform cells of these two regions are responsible for actively remodeling and maintaining their connective tissues. In glaucoma, aberrant maintenance of the juxtacanalicular tissues (JCT) of the conventional outflow pathway results in ocular hypertension and pathological remodeling of the lamina cribrosa results in ONH cupping, damaging retinal ganglion cell axons. Interestingly, cells cultured from the lamina cribrosa and the JCT of the trabecular meshwork have similarities regarding gene expression, protein production, plus cellular responses to growth factors and mechanical stimuli. This review compares and contrasts the current knowledge of these two cell types, whose health is critical for protecting the eye from glaucomatous changes. In response to pressure gradients across their respective cribiform tissues, the goal is to better understand and differentiate healthy from pathological behavior of these two cell types.
Collapse
Affiliation(s)
- Jayter S Paula
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Colm O'Brien
- Ophthalmology, UCD School of Medicine, Mater Hospital, Dublin, Ireland
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
Experimentally Induced Mammalian Models of Glaucoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:281214. [PMID: 26064891 PMCID: PMC4433635 DOI: 10.1155/2015/281214] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022]
Abstract
A wide variety of animal models have been used to study glaucoma. Although these models provide valuable information about the disease, there is still no ideal model for studying glaucoma due to its complex pathogenesis. Animal models for glaucoma are pivotal for clarifying glaucoma etiology and for developing novel therapeutic strategies to halt disease progression. In this review paper, we summarize some of the major findings obtained in various glaucoma models and examine the strengths and limitations of these models.
Collapse
|
8
|
Astafurov K, Dong CQ, Panagis L, Kamthan G, Ren L, Rozenboym A, Perera TD, Coplan JD, Danias J. Complement expression in the retina is not influenced by short-term pressure elevation. Mol Vis 2014; 20:140-52. [PMID: 24505213 PMCID: PMC3913488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/28/2014] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To determine whether short-term pressure elevation affects complement gene expression in the retina in vitro and in vivo. METHODS Muller cell (TR-MUL5) cultures and organotypic retinal cultures from adult mice and monkeys were subjected to either 24-h or 72-h of pressure at 0, 15, 30, and 45 mmHg above ambient. C57BL/6 mice were subjected to microbead-induced intraocular pressure (IOP) elevation for 7 days. RNA and protein were extracted and used for analysis of expression levels of complement component genes and complement component 1, q subcomponent (C1q) and complement factor H (CFH) immunoblotting. RESULTS mRNA levels of complement genes and C1q protein levels in Muller cell cultures remained the same for all pressure levels after exposure for either 24 or 72 h. In primate and murine organotypic cultures, pressure elevation did not produce changes in complement gene expression or C1q and CFH protein levels at either the 24-h or 72-h time points. Pressure-related glial fibrillary acidic protein (GFAP) mRNA expression changes were detected in primate retinal organotypic cultures (analysis of variance [ANOVA]; p<0.05). mRNA expression of several other genes changed as a result of time in culture. Eyes subjected to microbead-induced IOP elevation had no differences in mRNA expression of complement genes and C1q protein levels (ANOVA; p>0.05 for both) with contralateral control and naïve control eyes. CONCLUSIONS Short-term elevation of pressure in vitro as well as short-term (1 week) IOP elevation in vivo does not seem to dramatically alter complement system gene expression in the retina. Prolonged expression to elevated pressure may be necessary to affect the complement system expression.
Collapse
Affiliation(s)
| | - Cecilia Q. Dong
- Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Lampros Panagis
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Gautam Kamthan
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY
| | - Lizhen Ren
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Anna Rozenboym
- Department of Biological Sciences, CUNY Kingsborough Community College, Brooklyn, NY
| | - Tarique D. Perera
- Department of Psychiatry, Columbia University Medical Center and New York State Psychiatric Institute, New York, NY
| | - Jeremy D. Coplan
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY
| | - John Danias
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY,Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY
| |
Collapse
|
9
|
Tran VT, Ho PT, Cabrera L, Torres JE, Bhattacharya SK. Mechanotransduction channels of the trabecular meshwork. Curr Eye Res 2013; 39:291-303. [PMID: 24215462 DOI: 10.3109/02713683.2013.842593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To determine whether the trabecular meshwork (TM), like the other organs engaged in filter like activities (such as kidneys), show the expression of known mechanotransduction channels at protein level. METHODS Human donor eye globes (n = 20), Donor eye derived TM tissue and primary TM cells were utilized for these studies. Commercially available antibodies to channels, immunohisto- and immunocytochemistry, Western blot and mass spectrometric analyses were performed to determine the presence of mechanosensitive channels at protein level. The study was performed adhering to tenets of declaration of Helsinki. RESULTS We demonstrate here the presence of 11 mechanotransduction channels (Piezo1, Piezo2, TASK1, TREK1, TRPA1, TRPC1, TRPC2, TRPC3, TRPC6, TRPM2, TRPP2) as expressed protein in the TM tissue and at the isolated TM cell level. Presence of at least one known isoform of these channels was demonstrated using Western blot analyses. CONCLUSIONS We demonstrated the presence of 11 mechanotransduction channels in the TM and in isolated TM cells at protein level. Demonstration of these channels as proteins at tissue and cellular level will pave the way for further experimentation.
Collapse
Affiliation(s)
- Vu T Tran
- Bascom Palmer Eye Institute, University of Miami , Miami, FL , USA
| | | | | | | | | |
Collapse
|
10
|
Xue W, Du P, Lin S, Dudley VJ, Hernandez MR, Sarthy VP. Gene expression changes in retinal Müller (glial) cells exposed to elevated pressure. Curr Eye Res 2011; 36:754-67. [PMID: 21780925 DOI: 10.3109/02713683.2011.585417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Retinal Müller (glial) cells undergo "reactive gliosis", a stress response that is accompanied by changes in their morphology and upregulation of various cellular markers. Reactive gliosis is seen in many retinal diseases and conditions; however, it is not known whether it is a common, stereotypic response or the nature of the response varies with the type of retinal stress. To address this question, we have examined gene expression changes in Müller cells exposed to elevated pressure. MATERIALS AND METHODS Rat Müller cells (rMC-1) were exposed to elevated pressure, and RNA was extracted and analyzed using Affymetrix GeneChip microarrays to identify pressure-responsive genes. RESULTS Analysis of microarray data showed that at 6 h, 186 genes had > 1.5-fold change with FDR < 0.01. Of these, 62 genes were up-regulated while 124 genes were down-regulated. At 24 h, 73 genes changed > 1.5-fold. Of these, 37 genes were up-regulated while 36 genes were down-regulated. Ingenuity canonical pathway analysis showed that several signaling and metabolic pathways were significantly changed in Müller cells under high pressure. In addition, among up- and down-regulated genes, we identified eight genes-areg, bmp4, cyp1b1, gpnmb, herc2, msh2, heph, and selenbp1, that have been directly or indirectly associated with elevated intraocular pressure. Two genes, areg and gpnmb, further showed time-dependent changes in mRNA and protein expression. CONCLUSION The results show that Müller cells in vitro respond to elevated pressure by differential regulation of expressed genes. The transcriptional profile is different from that seen with hypoxia, which indicates that Müller cells respond differentially to different microenvironmental changes in the retina.
Collapse
Affiliation(s)
- Wei Xue
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 606111, USA
| | | | | | | | | | | |
Collapse
|
11
|
Chowdhury UR, Bahler CK, Hann CR, Chang M, Resch ZT, Romero MF, Fautsch MP. ATP-sensitive potassium (KATP) channel activation decreases intraocular pressure in the anterior chamber of the eye. Invest Ophthalmol Vis Sci 2011; 52:6435-42. [PMID: 21743021 DOI: 10.1167/iovs.11-7523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. ATP-sensitive potassium channel (K(ATP)) openers target key cellular events, many of which have been implicated in glaucoma. The authors sought to determine whether K(ATP) channel openers influence outflow facility in human anterior segment culture and intraocular pressure (IOP) in vivo. METHODS. Anterior segments from human eyes were placed in perfusion organ culture and treated with the K(ATP) channel openers diazoxide, nicorandil, and P1075 or the K(ATP) channel closer glyburide (glibenclamide). The presence, functionality, and specificity of K(ATP) channels were determined by RT-PCR, immunohistochemistry, and inside-out patch clamp in human trabecular meshwork (TM) tissue or primary cultures of normal human trabecular meshwork (NTM) cells. The effect of diazoxide on IOP in anesthetized Brown Norway rats was measured with a rebound tonometer. RESULTS. K(ATP) channel openers increased outflow facility in human anterior segments (0.14 ± 0.02 to 0.26 ± 0.09 μL/min/mm Hg; P < 0.001) compared with fellow control eyes (0.22 ± 0.11 to 0.21 ± 0.11 μL/min/mm Hg; P > 0.5). The effect was reversible, with outflow facility returning to baseline after drug removal. The addition of glyburide inhibited diazoxide from increasing outflow facility. Electrophysiology confirmed the presence and specificity of functional K(ATP) channels. K(ATP) channel subunits K(ir)6.1, K(ir)6.2, SUR2A, and SUR2B were expressed in TM and NTM cells. In vivo, diazoxide significantly lowered IOP in Brown Norway rats. CONCLUSIONS. Functional K(ATP) channels are present in the trabecular meshwork. When activated by K(ATP) channel openers, these channels increase outflow facility through the trabecular outflow pathway in human anterior segment organ culture and decrease IOP in Brown Norway rat eyes.
Collapse
|
12
|
Tribute to Rosario Hernandez. Exp Eye Res 2011; 93:116-9. [DOI: 10.1016/j.exer.2011.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/22/2022]
|
13
|
da Silva EG, Gionfriddo JR, Hudachek SF, Gustafson DL, Olea-Popelka FJ, Scofield VL, Powell CC, Hill AE. Evaluation of the ocular penetration of topical alpha-luminol (Galavit®/GVT®). Vet Ophthalmol 2011; 14:180-5. [PMID: 21521442 DOI: 10.1111/j.1463-5224.2010.00862.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Oxidative stress plays a major role in the pathogenesis of many neurodegenerative diseases. It has also been implicated as part of the pathogenic mechanisms in the development of glaucoma. Alpha-luminol has shown profound anti-inflammatory and antioxidant effects in both experimental animal and human clinical studies. The purpose of this pilot study was to investigate for the first time the ocular penetration of topical alpha-luminol. METHODS Nine animals were divided into three treated groups (three animals each; one drop OU/n = 18), each group receiving a different concentration of the eyedrop (0.5%, 1.5%, 2.5%). Aqueous humor and peripheral blood samples were obtained from each rabbit at three different timepoints (20 min, 4 h and 12 h). Samples were analyzed by means of high performance liquid chromatography and mass spectrometry; median values were compared. RESULTS Alpha-luminol was found in the aqueous humor in all treated groups at all timepoints. At the 2nd and 3rd timepoints (4 h and 12 h), aqueous humor levels decreased significantly (P < 0.05) for two of the three dosages tested and it was not detectable in some eyes. The highest aqueous humor concentration of the drug was 272 ng/mL after 20 min (0.0217% of one drop, 2.5% group). Alpha-luminol was found in the vitreous in two animals, one in the 1.5% and another in the 2.5% group (16.4 and 21.5 ng/mL, respectively), at 12 h. CONCLUSIONS Topically administered alpha-luminol readily penetrates into the anterior chamber and can penetrate into the vitreous chamber. Further investigation is warranted to better understand the intraocular pharmacokinetics of alpha-luminol.
Collapse
Affiliation(s)
- Enry G da Silva
- Department of Clinical Sciences, Colorado State University, College of Veterinary Medicine, Fort Collins, CO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Govindarajan B, Junk A, Algeciras M, Salomon RG, Bhattacharya SK. Increased isolevuglandin-modified proteins in glaucomatous astrocytes. Mol Vis 2009; 15:1079-91. [PMID: 19503745 PMCID: PMC2690965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/25/2009] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Lipid oxidation has been proposed to be a factor in the pathophysiology of glaucoma. We investigated whether elevated levels of isolevuglandin (iso[4]LGE(2)) protein adducts are associated with astrocytes derived from the glaucomatous optic nerve head. In addition, we examined whether the iso[4]LGE(2) protein adducts are altered following exposure of astrocytes to elevated pressure. METHODS Astrocytes were isolated from rat brain cortex and human optic nerve and were subjected to pressure treatments, western blot analyses, liquid chromatography tandem mass spectrometry, and immunocytochemistry. RESULTS Elevated levels of isolevuglandin (iso[4]LGE(2)) protein adducts were associated with astrocytes derived from the glaucomatous (n=10) optic nerve head when compared to those from controls (n=6). Astrocytes subjected to in vitro pressure treatment resulted in increased levels of iso[4]LGE(2) protein adducts. Pressure exposure and the recovery period affect iso[4]LGE(2) protein modification, and pyridoxamine was effective in decreasing the appearance of iso[4]LGE(2) protein adduct immunoreactivity when applied immediately after pressure treatment. CONCLUSIONS These results suggest that the elevated iso[4]LGE(2) protein adduct immunoreactivity observed in glaucomatous astrocytes may be due to chronic and/or prolonged exposure to pressure, and pyridoxamine may have prophylactic utility against such oxidative protein modification.
Collapse
Affiliation(s)
| | - Anna Junk
- Bascom Palmer Eye Institute, University of Miami, Miami, FL
| | | | - Robert G. Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | | |
Collapse
|
16
|
Russ AL, Dadarlat IA, Haberstroh KM, Rundell AE. Investigating the role of ischemia vs. elevated hydrostatic pressure associated with acute obstructive uropathy. Ann Biomed Eng 2009; 37:1415-24. [PMID: 19381812 DOI: 10.1007/s10439-009-9695-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 04/07/2009] [Indexed: 11/29/2022]
Abstract
Obstructive uropathy can cause irreversible renal damage. It has been hypothesized that elevated hydrostatic pressure within renal tubules and/or renal ischemia contributes to cellular injury following obstruction. However, these assaults are essentially impossible to isolate in vivo. Therefore, we developed a novel pressure system to evaluate the isolated and coordinated effects of elevated hydrostatic pressure and ischemic insults on renal cells in vitro. Cells were subjected to: (1) elevated hydrostatic pressure (80 cm H(2)O); (2) ischemic insults (hypoxia (0% O(2)), hypercapnia (20% CO(2)), and 0 mM glucose media); and (3) elevated pressure + ischemic insults. Cellular responses including cell density, lactate dehydrogenase (LDH) release, and intracellular LDH (LDH(i)), were recorded after 24 h of insult and following recovery. Data were analyzed to assess the primary effects of ischemic insults and elevated pressure. Unlike pressure, ischemic insults exerted a primary effect on nearly all response measurements. We also evaluated the data for insult interactions and identified significant interactions between ischemic insults and pressure. Altogether, findings indicate that pressure may sub-lethally effect cells and alter cellular metabolism (LDH(i)) and membrane properties. Results suggest that renal ischemia may be the primary, but not the sole, cause of cellular injury induced by obstructive uropathy.
Collapse
Affiliation(s)
- Alissa L Russ
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN 47907-1791, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE To review a range of activities associated with intraocular pressure (IOP) spikes. To examine the possible significance of IOP spikes in conditions such as keratectasia, axial myopia, and glaucoma. METHODS Hypotheses concerning mechanisms for adverse responses to IOP spikes were examined. RESULTS Apart from the possibility that IOP spikes might cause susceptible corneal, posterior scleral, or optic nerve head tissue to yield to associated distending forces, there is the possibility that these tissues will be also be damaged by increased hydrostatic pressure. CONCLUSIONS In-office tonometry does not indicate the degree to which ocular tissues are exposed to IOP spikes. For eyes that are exposed to IOP spikes of longer duration, that occur frequently and which result in a larger IOP increment, the risk of an adverse response may be greater. Changes in ocular tissues because of increased hydrostatic pressure may include morphological cellular changes and alterations to enzyme function. Eye rubbing may be the most significant mechanism for creating IOP spikes because of the large IOP increments that may be involved, as well as the possibility that abnormal rubbing can become a chronic habit. As appears to be the case in keratoconus, asymmetric exposure to IOP spikes may help to explain some asymmetric presentations of post-laser-assisted in situ keratomileusis, glaucoma, or myopia. Ideally methods for the objective assessment of patient risk for adverse responses to IOP spikes will continue to be developed. A self-administered questionnaire may help identify patients who are significantly exposed to IOP spikes. Family history may indicate an increased risk of diseases for which IOP spikes may have significant implications. Patient counseling regarding the possibility that IOP spiking activities may contribute to the development and/or progression of conditions such as keratectasia, axial myopia, and glaucoma may be indicated.
Collapse
|
18
|
WuDunn D. Mechanobiology of trabecular meshwork cells. Exp Eye Res 2008; 88:718-23. [PMID: 19071113 DOI: 10.1016/j.exer.2008.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/29/2008] [Accepted: 11/16/2008] [Indexed: 10/21/2022]
Abstract
Trabecular meshwork (TM) cells likely play a key role in regulating outflow facility and hence intraocular pressure. They function in a dynamic environment subjected to variations in mechanical and fluid shear forces. Because the extent of mechanical stress on the trabecular meshwork is dependent on the intraocular pressure, the behavior of TM cells under mechanical strain may suggest mechanisms for how outflow facility is regulated. Studies have demonstrated that TM cells respond in a variety of ways to mechanical loads, including increased extracellular matrix turnover, altered gene expression, cytokine release, and altered signal transduction. This review highlights some of the considerations and limitations of studying the mechanobiology of TM cells.
Collapse
Affiliation(s)
- Darrell WuDunn
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
19
|
Sappington RM, Sidorova T, Long DJ, Calkins DJ. TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure. Invest Ophthalmol Vis Sci 2008; 50:717-28. [PMID: 18952924 DOI: 10.1167/iovs.08-2321] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Elevated hydrostatic pressure induces retinal ganglion cell (RGC) apoptosis in culture. The authors investigated whether the transient receptor potential vanilloid 1 (TRPV1) channel, which contributes to pressure sensing and Ca(2+)-dependent cell death in other systems, also contributes to pressure-induced RGC death and whether this contribution involves Ca(2+). METHODS trpv1 mRNA expression in RGCs was probed with the use of PCR and TRPV1 protein localization through immunocytochemistry. Subunit-specific antagonism (iodo-resiniferatoxin) and agonism (capsaicin) were used to probe how TRPV1 activation affects the survival of isolated RGCs at ambient and elevated hydrostatic pressure (+70 mm Hg). Finally, for RGCs under pressure, the authors tested whether EGTA chelation of Ca(2+) improves survival and whether, with the Ca(2+) dye Fluo-4 AM, TRPV1 contributes to increased intracellular Ca(2+). RESULTS RGCs express trpv1 mRNA, with robust TRPV1 protein localization to the cell body and axon. For isolated RGCs under pressure, TRPV1 antagonism increased cell density and reduced apoptosis to ambient levels (P <or= 0.05), whereas for RGCs at ambient pressure, TRPV1 agonism reduced density and increased apoptosis to levels for elevated pressure (P <or= 0.01). Chelation of extracellular Ca(2+) reduced RGC apoptosis at elevated pressure by nearly twofold (P <or= 0.01). Exposure to elevated hydrostatic pressure induced a fourfold increase in RGC intracellular Ca(2+) that was reduced by half with TRPV1 antagonism. Finally, in the DBA/2 mouse model of glaucoma, levels of TRPV1 in RGCs increased with elevated IOP. CONCLUSIONS RGC apoptosis induced by elevated hydrostatic pressure arises substantially through TRPV1, likely through the influx of extracellular Ca(2+).
Collapse
Affiliation(s)
- Rebecca M Sappington
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0654, USA
| | | | | | | |
Collapse
|
20
|
Reigada D, Lu W, Zhang M, Mitchell CH. Elevated pressure triggers a physiological release of ATP from the retina: Possible role for pannexin hemichannels. Neuroscience 2008; 157:396-404. [PMID: 18822352 DOI: 10.1016/j.neuroscience.2008.08.036] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/26/2008] [Accepted: 08/19/2008] [Indexed: 01/16/2023]
Abstract
Increased hydrostatic pressure can damage neurons, although the mechanisms linking pressure to neurochemical imbalance or cell injury are not fully established. Throughout the body, mechanical perturbations such as shear stress, cell stretching, or changes in pressure can lead to excessive release of ATP. It is thus possible that increased pressure across neural tissues triggers an elevated release of ATP into extracellular space. As stimulation of the P2X(7) receptor for ATP on retinal ganglion cells leads to elevation of intracellular calcium and excitotoxic death, we asked whether increased levels of extracellular ATP accompanied an elevation in pressure across the retina. The hydrostatic pressure surrounding bovine retinal eyecups was increased and the ATP content of the vitreal compartment adjacent to the retina was determined. A step increase of only 20 mm Hg induced a threefold increase in the vitreal ATP concentration. The ATP levels correlated closely with the degree of pressure increase over 20-100 mm Hg. The increase was transient at lower pressures but sustained at higher pressures. The rise in vitreal ATP was the same regardless of whether nitrogen or air was used to increase pressure, implying changes in oxygen partial pressure did not contribute. Lactate dehydrogenase activity was not affected by pressure, ruling out a substantial contribution from cell lysis. The ATP increase was largely inhibited by either 30 muM 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) or 10 muM carbenoxolone (CBX). While this pharmacological profile is consistent with physiological release of ATP through pannexins hemichannels, a contribution from anion channels, vesicular release or other mechanisms cannot be ruled out. In conclusion, a step elevation in pressure leads to a physiologic increase in the levels of extracellular ATP bathing retinal neurons. This excess extracellular ATP may link increased pressure to the death of ganglion cells in acute glaucoma, and suggests a possible role for ATP in the neuronal damage accompanying increased intracranial pressure.
Collapse
Affiliation(s)
- D Reigada
- Department of Physiology, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | | | | | | |
Collapse
|
21
|
Miao H, Chen L, Riordan SM, Li W, Juarez S, Crabb AM, Lukas TJ, Du P, Lin SM, Wise A, Agapova OA, Yang P, Gu CC, Hernandez MR. Gene expression and functional studies of the optic nerve head astrocyte transcriptome from normal African Americans and Caucasian Americans donors. PLoS One 2008; 3:e2847. [PMID: 18716680 PMCID: PMC2518525 DOI: 10.1371/journal.pone.0002847] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/07/2008] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To determine whether optic nerve head (ONH) astrocytes, a key cellular component of glaucomatous neuropathy, exhibit differential gene expression in primary cultures of astrocytes from normal African American (AA) donors compared to astrocytes from normal Caucasian American (CA) donors. METHODS We used oligonucleotide Affymetrix microarray (HG U133A & HG U133A 2.0 chips) to compare gene expression levels in cultured ONH astrocytes from twelve CA and twelve AA normal age matched donor eyes. Chips were normalized with Robust Microarray Analysis (RMA) in R using Bioconductor. Significant differential gene expression levels were detected using mixed effects modeling and Statistical Analysis of Microarray (SAM). Functional analysis and Gene Ontology were used to classify differentially expressed genes. Differential gene expression was validated by quantitative real time RT-PCR. Protein levels were detected by Western blots and ELISA. Cell adhesion and migration assays tested physiological responses. Glutathione (GSH) assay detected levels of intracellular GSH. RESULTS Multiple analyses selected 87 genes differentially expressed between normal AA and CA (P<0.01). The most relevant genes expressed in AA were categorized by function, including: signal transduction, response to stress, ECM genes, migration and cell adhesion. CONCLUSIONS These data show that normal astrocytes from AA and CA normal donors display distinct expression profiles that impact astrocyte functions in the ONH. Our data suggests that differences in gene expression in ONH astrocytes may be specific to the development and/or progression of glaucoma in AA.
Collapse
Affiliation(s)
- Haixi Miao
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Lin Chen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Sean M. Riordan
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wenjun Li
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Santiago Juarez
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Andrea M. Crabb
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas J. Lukas
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Pan Du
- Robert H, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Simon M. Lin
- Robert H, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Alexandria Wise
- Department of Biology, City College of New York, New York, New York, United States of America
| | - Olga A. Agapova
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ping Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Charles C. Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - M. Rosario Hernandez
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
22
|
Brust AK, Ulbrich HK, Seigel GM, Pfeiffer N, Grus FH. Effects of Cyclooxygenase Inhibitors on Apoptotic Neuroretinal Cells. Biomark Insights 2008; 3:387-402. [PMID: 19578520 PMCID: PMC2688370 DOI: 10.4137/bmi.s692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glaucoma is characterized by a loss of retinal ganglion cells (RGC) which is associated with a decrease of visual function. Neuroprotective agents as a new therapeutic strategy could prevent the remaining neurons from apoptotic cell death. Previous studies have shown the involvement of the Cyclooxygenase (COX)-2 signalling in the apoptotic death of neurons. Herein we investigated the neuroprotective effect of COX-1/COX-2- and selective COX-2- inhibitors on apoptotic. R28, a neuroretinal cell line and determined the PGE(2) levels by ELISA. Furthermore we investigated differences in protein expression in the cells after exposure to elevated pressure compared to untreated cells by ProteinChip analysis.In addition, a protein profiling study of the cells after exposure to elevated pressure was performed. The protein expression profiles were measured by SELDI-TOF (Surface Enhanced Laser Desorption/Ionization-time of flight) Protein Chips. The protein identification was performed by mass spectrometry (MS).It could be shown that COX-2 inhibition significantly prevented the cells from apoptosis and reduced the PGE(2) concentrations. Selective COX-2 inhibitors were significant more potent than non-selective inhibitors or COX-1 inhibitors. We found differently expressed protein patterns in neuroretinal cells cultured at atmospheric pressure compared to those cells exposed to elevated pressure with or without celecoxib respectively. We identified three biomarkers, ubiquitin, HSP10 and NDKB, which were differently expressed in the groups. However, our data indicates a distinct neuroprotective effect of COX-2 inhibition. The local treatment with selective COX-2 inhibitors might provide an innovative strategy of therapeutic intervention for glaucoma.
Collapse
Affiliation(s)
- Anja-Kristina Brust
- Department of Ophthalmology, Johannes Gutenberg University of Mainz, Germany
| | | | | | | | | |
Collapse
|
23
|
Hernandez MR, Miao H, Lukas T. Astrocytes in glaucomatous optic neuropathy. PROGRESS IN BRAIN RESEARCH 2008; 173:353-73. [DOI: 10.1016/s0079-6123(08)01125-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
24
|
Malone P, Miao H, Parker A, Juarez S, Hernandez MR. Pressure induces loss of gap junction communication and redistribution of connexin 43 in astrocytes. Glia 2007; 55:1085-98. [PMID: 17551925 DOI: 10.1002/glia.20527] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Astrocytes, the major glia in the nonmyelinated optic nerve head (ONH), connect via gap junctions built of connexin-43 (Cx43) to form a functional syncytium allowing communication and control of ionic and metabolic homeostasis of retinal ganglion cells (RGCs) axon. We examined gap junction intercellular communication (GJIC) by scrape loading assays in human ONH astrocytes exposed to hydrostatic (HP) or ambient pressure (CP) in vitro. Immunostaining, immunoprecipitation, and immunoblots were used to detect Cx43 distribution and phosphorylation in astrocytes exposed to HP with/without EGF receptor (EGFR) tyrosine kinase inhibitors AG1478 and AG82 and MAPK inhibitors U0126, PD98059, and SB203580. The data indicates that upon exposure to HP, astrocytes decrease GJIC and exhibit altered cellular localization and phosphorylation of Cx43. Inhibition of EGFR blocked the effects of HP on GJIC and HP-induced Cx43 tyrosine phosphorylation. Inhibitors of MAPK- ERK1/2 and -p38 caused partial closure of GJIC under CP and HP, which was maintained for 6 h. Inhibition of Big Mitogen-Activated Kinase 1/ERK5 (BMK1/ERK5) caused partial closure under CP and HP followed by full recovery after 6 h. Inhibition of MAPK did not affect the HP-induced increase in Cx43 serine 279/282 phosphorylation. We conclude that activation of the EGFR pathway in response to HP leads to decrease of GJIC via tyrosine phosphorylation of Cx43 in ONH astrocytes. In glaucoma under conditions of elevated intraocular pressure (IOP), astrocytes may lose GJIC altering the homeostasis of RGC axons, adopting the reactive phenotype, contributing to glaucomatous neuropathy.
Collapse
Affiliation(s)
- Paula Malone
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
25
|
Resta V, Novelli E, Vozzi G, Scarpa C, Caleo M, Ahluwalia A, Solini A, Santini E, Parisi V, Di Virgilio F, Galli-Resta L. Acute retinal ganglion cell injury caused by intraocular pressure spikes is mediated by endogenous extracellular ATP. Eur J Neurosci 2007; 25:2741-54. [PMID: 17459106 DOI: 10.1111/j.1460-9568.2007.05528.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Elevated intraocular pressure may lead to retinal ganglion cell injury and consequent visual deficits. Chronic intraocular pressure increase is a major risk factor for glaucoma, a leading blinding disease, and permanent visual deficits can also occur following acute pressure increments due to trauma, acute glaucoma or refractive surgery. How pressure affects retinal neurons is not firmly established. Mechanical damage at the optic nerve head, reduced blood supply, inflammation and cytotoxic factors have all been called into play. Reasoning that the analysis of retinal neurons soon after pressure elevation would provide useful cues, we imaged individual ganglion cells in isolated rat retinas before and after short hydrostatic pressure increments. We found that slowly rising pressure to peaks observed in trauma, acute glaucoma or refractive surgery (50-90 mmHg) did not damage ganglion cells, whereas a rapid 1 min pulse to 50 mmHg injured 30% of these cells within 1 h. The severity of damage and the number of affected cells increased with stronger or repeated insults. Degrading extracellular ATP or blocking the P2X receptors for ATP prevented acute pressure-induced damage in ganglion cells. Similar effects were observed in vivo. A short intraocular pressure transient increased extracellular ATP levels in the eye fluids and damaged ganglion cells within 1 h. Reducing extracellular ATP in the eye prevented damage to ganglion cells and accelerated recovery of their response to light. These data show that rapid pressure transients induce acute ganglion cell injury and unveil the causal role of extracellular ATP elevation in such injury.
Collapse
|
26
|
Calandrella N, Scarsella G, Pescosolido N, Risuleo G. Degenerative and apoptotic events at retinal and optic nerve level after experimental induction of ocular hypertension. Mol Cell Biochem 2007; 301:155-63. [PMID: 17242991 DOI: 10.1007/s11010-006-9407-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/20/2006] [Indexed: 11/28/2022]
Abstract
Ocular hypertension is a symptom of a glaucomatous condition characterized by a severe vision decrease. Blindness caused by the apoptotic death of the retinal ganglion cells and of the astrocytes of the optic nerve may eventually result. Experimental hypertension was induced by inoculation of methylcellulose in the anterior chamber. Chromatin staining, TUNEL assay, and inter-nucleosomal DNA fragmentation observed in retina and optic nerve strongly suggest that hypertension causes apoptosis. Immunolocalization of the fibrillary acidic glial protein, specific of cell stress, and caspase-3 in the same tissues, further support this mode of cell death. Activation of the ubiquitin dependent proteolytic system was also observed. Protection from apoptosis exerted by administration of the peroxide scavenger trolox, suggests that the apoptotic pathway is activated by an oxidative stress. The data presented here show that the experimental hypertensive insult induces degenerative and apoptotic events comparable to those observed in human glaucoma.
Collapse
Affiliation(s)
- Nicola Calandrella
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Roma La Sapienza, Piazzale Aldo Moro, Rome, Italy
| | | | | | | |
Collapse
|
27
|
Comes N, Abad E, Morales M, Borrás T, Gual A, Gasull X. Identification and functional characterization of ClC-2 chloride channels in trabecular meshwork cells. Exp Eye Res 2006; 83:877-89. [PMID: 16769051 DOI: 10.1016/j.exer.2006.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/24/2022]
Abstract
In the eye, trabecular meshwork (TM) cell volume may be an important determinant of aqueous humor outflow. Among their functions, ClC-2 chloride channels are thought to be involved in regulation of cellular volume and intracellular [Cl(-)]. We characterized the properties and modulation of an inwardly rectifying chloride current activated in these cells. Patch-clamp recordings revealed inwardly rectifying chloride currents activated by membrane hyperpolarization in primary cultures of both bovine (BTM) and human (HTM) TM cells. Electrophysiological properties and anion permeability sequence (Cl(-)>Br(-)>I(-)>F(-)) were in agreement with previous data for ClC-2 in other cells. The currents were blocked by Cd(2+) and enhanced by extracellular acidification, 8Br-cAMP and cell swelling, while extracellular alkalinization decreased them. RT-PCR experiments using total RNA revealed the molecular expression of ClC-2 channels. Previously we reported the involvement of swelling-activated chloride channels (Cl(swell)) and Ca(2+)-activated K(+) channels (BK(Ca)) in cell volume and outflow facility regulation. However, in the present analysis, cell volume experiments in calcein-loaded cells and outflow facility studies performed in bovine anterior segments revealed that ClC-2 channels do not make a significant contribution to the recovery of cellular volume or to the regulation of the outflow facility. Nevertheless, ClC-2 modulation by different stimuli may contribute to intracellular [Cl(-)] regulation and other cellular functions yet to be determined in the TM.
Collapse
Affiliation(s)
- Núria Comes
- Laboratory of Neurophysiology, Department of Physiological Sciences I-Institute of Biomedical Investigations August Pi i Sunyer, IDIBAPS, School of Medicine, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Agar A, Li S, Agarwal N, Coroneo MT, Hill MA. Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res 2006; 1086:191-200. [PMID: 16638612 DOI: 10.1016/j.brainres.2006.02.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 02/09/2006] [Accepted: 02/13/2006] [Indexed: 11/26/2022]
Abstract
Cellular responses to changes in pressure are implicated in numerous disease processes. In glaucoma apoptosis of retinal ganglion cells (RGCs) is associated with elevated intra-ocular pressure, however, the exact cellular mechanisms remain unclear. We have previously shown that pressure can induce apoptosis in B35 and PC12 neuronal cell lines, using an in vitro model for pressure elevation. A novel RGC line allows us to study the effects of pressure on retinal neurons. 'RGC-5' cultures were subjected to elevated ambient hydrostatic pressure conditions in our model. Experimental pressure conditions were 100 mm Hg and 30 mm Hg, representing acute (high) and chronic (lower-pressure) glaucoma, and 15 mm Hg for normal intra-ocular pressure, set above atmospheric pressure for 2 h. Negative controls were treated identically except for the application of pressure, while positive controls were generated by treatment with a known apoptotic stimulus. Apoptosis was determined by a combination of cell morphology and specific TUNEL and Annexin V fluorescent markers. These were assessed simultaneously by laser scanning cytometry (LSC), which also enabled quantitative marker analysis. RGC-5 neurons showed a significantly increased proportion of apoptotic cells compared with controls; maximal at 100 mm Hg, moderate at 30 mm Hg and not statistically significant at 15 mm Hg. This graded response, proportionate to the level of pressure elevation, is representative of the severity of analogous clinical settings (acute, chronic glaucoma and normal). These results complement earlier findings of pressure-induced apoptosis in other neuronal cultures. They suggest the possibility of novel mechanisms of pressure-related mechanotransduction and cell death, relevant to the pathogenesis of diseases such as glaucoma.
Collapse
Affiliation(s)
- Ashish Agar
- Cell Biology Laboratory, School of Anatomy, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
29
|
Tan JCH, Kalapesi FB, Coroneo MT. Mechanosensitivity and the eye: cells coping with the pressure. Br J Ophthalmol 2006; 90:383-8. [PMID: 16488967 PMCID: PMC1856976 DOI: 10.1136/bjo.2005.079905] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The cells of the various organ systems in humans are subject to mechanical forces to which they must respond. Here the authors review what is known of the ways in which the cells of animals, ranging from the prokaryotic to humans, sense and transduce mechanical forces to respond to such stimuli. In what way this pertains to the eye, especially with respect to axial myopia and the pressure related disease of glaucoma, is then surveyed.
Collapse
Affiliation(s)
- J C H Tan
- Department of Ophthalmology, Prince of Wales Hospital, High Street, Randwick, NSW 2032, Australia
| | | | | |
Collapse
|
30
|
Diresta GR, Nathan SS, Manoso MW, Casas-Ganem J, Wyatt C, Kubo T, Boland PJ, Athanasian EA, Miodownik J, Gorlick R, Healey JH. Cell proliferation of cultured human cancer cells are affected by the elevated tumor pressures that exist in vivo. Ann Biomed Eng 2005; 33:1270-80. [PMID: 16133932 DOI: 10.1007/s10439-005-5732-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Elevated interstitial fluid pressure (IFP) is observed in most solid tumors. However, the study of the cellular processes of tumors and the development of chemotherapy are routinely studied using in vitro culture systems at atmospheric pressure. Using a new pressurized cell culture system, we investigated the influence of hydrostatic pressure on population dynamics of three primary osteosarcoma (HOS, U2OS, SaOS2) and two metastatic tumor cell lines (MCF7 breast, H1299 lung) that invade bone. Values of IFP in normal human bone and muscle, and in osteosarcoma tumors obtained during their surgical biopsy established the hydrostatic pressure range for the in vitro cell studies. The IFP values were obtained from a retrospective review of patient records. IFP from confirmed osteosarcoma was 35.9+/- 16.2 mmHg. Tumor IFP was significantly higher than muscle IFP (p < 0.001) and bone IFP (p < 0.003). The in vitro study measured the cell-line proliferation using hydrostatic pressures of 0, 20, 50 and 100 mmHg. The findings suggest that hydrostatic pressure either increases or decreases tumor proliferation rates depending on cell type. Furthermore, cell death was not associated with apoptosis.
Collapse
Affiliation(s)
- Gene R Diresta
- Department of Surgery/Orthopaedic Surgery, Memorial Sloan Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kalapesi FB, Tan JCH, Coroneo MT. Stretch-activated channels: a mini-review. Are stretch-activated channels an ocular barometer? Clin Exp Ophthalmol 2005; 33:210-7. [PMID: 15807835 DOI: 10.1111/j.1442-9071.2005.00981.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All cells are subject to physical forces by virtue of their position in a dynamically changing environment. This review outlines the various putative 'mechanosensors', or sensors of pressure cells possess, and discusses in particular the role stretch-activated membrane channels play in pressure recognition and transduction. The widespread occurrence of these channels is discussed and these 'mechanosensors' are related to pressure-related diseases, in particular, glaucoma.
Collapse
Affiliation(s)
- Freny B Kalapesi
- Department of Ophthalmology, Prince of Wales Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
32
|
Morrison JC, Johnson EC, Cepurna W, Jia L. Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res 2005; 24:217-40. [PMID: 15610974 DOI: 10.1016/j.preteyeres.2004.08.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patients with glaucoma can suffer progressive vision loss, even in the face of what appears to be excellent intraocular pressure (IOP) control. Some of this may be secondary to non-pressure-related (pressure-independent) factors. However, it is likely that chronically elevated IOP produces progressive changes in the optic nerve head, the retina, or both that alter susceptibility of remaining optic nerve fibers to IOP. In order to understand the nature of these progressive changes, relevant, cost-effective animal models are necessary. Several rat models are now used to produce chronic, elevated IOP, and methods exist for measuring the resulting IOP and determining the extent of the damage this causes to the retina and optic nerve. A comparison of damage, pressure and duration shows that these models are not necessarily equivalent. These tools are beginning to uncover clear evidence that elevated IOP produces progressive changes in the optic nerve head and retina. In the optic nerve head, these include axonal and non-axonal effects, the latter pointing to involvement of extracellular matrix and astrocyte responses. In the retina, retinal ganglion cells appear to undergo changes in neurotrophin response as well as morphologic changes prior to actual cell death. These, and other, as yet uncovered, abnormalities in the optic nerve head and retina may influence relative susceptibility to IOP and explain progressive optic nerve damage and visual field loss, in spite of apparent, clinically adequate IOP control. Ultimately, this knowledge may lead to the development of new treatments designed to preserve vision in these difficult patients.
Collapse
Affiliation(s)
- John C Morrison
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Sciences University, 3375 S.W Terwilliger Blvd., Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
33
|
Yang P, Agapova O, Parker A, Shannon W, Pecen P, Duncan J, Salvador-Silva M, Hernandez MR. DNA microarray analysis of gene expression in human optic nerve head astrocytes in response to hydrostatic pressure. Physiol Genomics 2004; 17:157-69. [PMID: 14747662 DOI: 10.1152/physiolgenomics.00182.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is clinical and experimental evidence that elevated intraocular pressure (IOP), a mechanical stress, is involved in the pathogenesis of glaucomatous optic neuropathy. The mechanism by which astrocytes in the optic nerve head (ONH) respond to changes in IOP is under study. Gene transcription by ONH astrocytes exposed either to 60 mmHg hydrostatic pressure (HP) or control ambient pressure (CP) for 6, 24, and 48 h was compared using Affymetrix GeneChip microarrays to identify HP-responsive genes. Data were normalized across arrays within each gene. A linear regression model applied to test effect of time and HP on changes in expression level identified 596 genes affected by HP over time. Using GeneSpring analysis we selected genes whose average expression level increased or decreased more than 1.5-fold at 6, 24, or 48 h. Expression of selected genes was confirmed by real-time RT-PCR; protein levels were detected by Western blot. Among the genes highly responsive to HP were those involved in signal transduction, such as Rho nucleotide exchange factors, Ras p21 protein activator, tyrosine kinases and serine threonine kinases, and genes involved in transcriptional regulation, such as c-Fos, Egr2, and Smad3. Other genes that increased expression included ATP-binding cassettes, solute carriers, and genes associated with lipid metabolism. Among the genes that decreased expression under HP were genes encoding for dual activity phosphatases, transcription factors, and enzymes involved in protein degradation. These HP-responsive genes may be important in the establishment and maintenance of the ONH astrocyte phenotype under conditions of elevated IOP in glaucoma.
Collapse
Affiliation(s)
- Ping Yang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Salvador-Silva M, Aoi S, Parker A, Yang P, Pecen P, Hernandez MR. Responses and signaling pathways in human optic nerve head astrocytes exposed to hydrostatic pressure in vitro. Glia 2004; 45:364-77. [PMID: 14966868 DOI: 10.1002/glia.10342] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, we examined the effects of mechanical stress induced by elevated hydrostatic pressure (HP) on the migration of human optic nerve head (ONH) astrocytes, using an in vitro model that follows repopulation of a cell-free area (CFA) created on a monolayer of cultured astrocytes. alpha-Tubulin staining detected phenotypic changes in astrocytes exposed to HP. The influence of proliferation in closure of the CFA was determined by incorporation of BrdU under 1.5-cm H2O, control pressure (CP), and 10-cm H2O HP with or without 5-fluorouracil. Under control and experimental conditions, closure of the CFA occurred mostly by migration and less by proliferation. Exposure to 10-cm H2O HP induced faster closure of the CFA at 1, 3, and 5 days. The signaling pathways involved in responses to HP were determined using genistein, tyrphostin A25, AG1478, and AG1295, inhibitors of receptor tyrosine kinases; wortmannin and LY294002, inhibitors of phosphatidyl inositol 3-kinase (PI-3K); and SC58236, an inhibitor of inducible cyclooxygenase-2 (COX2). Genistein and tyrphostin A25 blocked HP-induced migration at 1, 3, and 5 days, but did not affect closure of the CFA under CP. AG1478 and AG1295 blocked HP-induced migration and partially inhibit closure of the CFA under CP. LY294002 blocked HP-induced migration. SC58236 markedly inhibited closure of the CFA under CP by inhibiting COX2 activity. Exposure to HP, a physical stress, induced faster closure of the CFA via activation of members of the epidermal growth factor receptor (EGFR) family and PI-3K pathways. Under CP, closure of the CFA in response to denudation, a form of injury, is due to activation of COX2 in ONH astrocytes.
Collapse
Affiliation(s)
- Mercedes Salvador-Silva
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
35
|
Agapova OA, Kaufman PL, Lucarelli MJ, Gabelt BT, Hernandez MR. Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection. Brain Res 2003; 967:132-43. [PMID: 12650974 DOI: 10.1016/s0006-8993(02)04234-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular matrix (ECM) remodeling after neuronal injury and reactive gliosis is carried out by activation of matrix metalloproteinases (MMPs) regulated by their tissue inhibitors (TIMPs). In glaucoma, there is a loss of retinal ganglion cells and extensive ECM remodeling (cupping) at the level of the optic nerve head, frequently associated with elevated intraocular pressure. To determine whether ECM remodeling in the glaucomatous optic nerve head occurs in response to loss of axons or to elevated intraocular pressure we compared the patterns of MMP and TIMP expression in the eyes of monkeys with laser-induced glaucoma or with optic nerve transection. MT1-MMP and MMP1 expression was markedly increased in reactive astrocytes in optic nerve heads with experimental glaucoma but not in the optic nerve head of transected eyes. In normal control eyes retinal ganglion cells expressed MMP2, TIMP1 and TIMP2 constitutively, and the proteins were detected in their axons. At the site of transection, MT1-MMP, MMP1, MMP2, TIMP1 and TIMP2 were expressed by reactive astrocytes. Inflammatory cells, fibroblasts and reactive astrocytes at the transected site expressed MMP3 and MMP9, which were undetectable in the retina and optic nerve head in any condition. Constitutive expression of MMP2, TIMP1 and TIMP2 in retinal ganglion cells suggests a role in maintenance of synaptic integrity and plasticity and maintenance of the periaxonal space. Increased MMP1 and MT1-MMP1 expression in the glaucomatous optic nerve head is specific to tissue remodeling due to elevated intraocular pressure and not secondary to loss of axons.
Collapse
Affiliation(s)
- Olga A Agapova
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8096, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Gülgün Tezel
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Kentucky, USA
| | | |
Collapse
|
37
|
Hatton JP, Pooran M, Li CF, Luzzio C, Hughes-Fulford M. A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway. J Bone Miner Res 2003; 18:58-66. [PMID: 12510806 DOI: 10.1359/jbmr.2003.18.1.58] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Physiological mechanical loading is crucial for maintenance of bone integrity and architecture. We have calculated the strain caused by gravity stress on osteoblasts and found that 4-30g corresponds to physiological levels of 40-300 microstrain. Short-term gravity loading (15 minutes) induced a 15-fold increase in expression of growth-related immediate early gene c-fos, a 5-fold increase in egr-1, and a 3-fold increase in autocrine bFGF. The non-growth-related genes EP-1, TGF-beta, and 18s were unaffected by gravity loading. Short-term physiological loading induced extracellular signal-regulated kinase (ERK 1/2) phosphorylation in a dose-dependent manner with maximum phosphorylation saturating at mechanical loading levels of 12g (p < 0.001) with no effect on total ERK. The phosphorylation of focal adhesion kinase (FAK) was unaffected by mechanical force. g-Loading did not activate P38 MAPK or c-jun N-terminal kinase (JNK). Additionally, a gravity pulse resulted in the localization of phosphorylated ERK 1/2 to the nucleus; this did not occur in unloaded cells. The induction of c-fos was inhibited 74% by the MEK1/2 inhibitor U0126 (p < 0.001) but was not affected by MEK1 or p38 MAPK-specific inhibitors. The long-term consequence of a single 15-minute gravity pulse was a 64% increase in cell growth (p < 0.001). U0126 significantly inhibited gravity-induced growth by 50% (p < 0.001). These studies suggest that short periods of physiological mechanical stress induce immediate early gene expression and growth in MC3T3-E1 osteoblasts primarily through an ERK 1/2-mediated pathway.
Collapse
Affiliation(s)
- Jason P Hatton
- Northern California Institute for Research and Education, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Leonard A Levin
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
| | | |
Collapse
|
39
|
Hasel C, Dürr S, Brüderlein S, Melzner I, Möller P. A cell-culture system for long-term maintenance of elevated hydrostatic pressure with the option of additional tension. J Biomech 2002; 35:579-84. [PMID: 11955497 DOI: 10.1016/s0021-9290(01)00237-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In cell stress research, there is still a need to apply long-term hydrostatic pressure without changing any other environmental condition. We present here a new, open, pressurized chamber system allowing long-term sustained and dynamic application of hydrostatic pressure with the option of additional tension. Based on the computer-controlled Flexcell Strain Unit, we designed a pressurized chamber with a dynamic airflow and a defined membrane extension, which can be regulated by spacers. During operation up to 26.6kPa, O(2) partial pressures and pH in the cell-culture medium do not change compared to control cultures kept at normal atmosphere.
Collapse
Affiliation(s)
- Cornelia Hasel
- Department of Pathology, Ulm University, Albert-Einstein-Allee 11, D-89089 Ulm, Germany
| | | | | | | | | |
Collapse
|
40
|
Hernandez MR, Agapova OA, Yang P, Salvador-Silva M, Ricard CS, Aoi S. Differential gene expression in astrocytes from human normal and glaucomatous optic nerve head analyzed by cDNA microarray. Glia 2002; 38:45-64. [PMID: 11921203 DOI: 10.1002/glia.10051] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in cDNA microarray technology have made it possible to analyze expression of several thousand genes at the same time. Using this technique, gene expression in human astrocytes cultured from glaucomatous and normal optic nerve heads (ONH) was compared. One hundred-fifty genes were differentially expressed more than 5-fold in glaucomatous cell cultures compared with normal. These genes are involved in a number of biological processes, including signal transduction, cell adhesion and proliferation, ECM synthesis, and degradation. Confirmation of differential gene expression was performed by quantitative RT-PCR. Western blots and immunohistochemistry demonstrated gene products in cell cultures or in human ONH tissues. Proliferation, adhesion and migration assays tested physiological responses suggested by differential gene expression. Our study suggests that cultured glaucomatous ONH astrocytes retain in culture many phenotypic characteristics that may be relevant to their role in the pathogenesis of glaucoma and, in general to reactive astrocytes in the CNS. Potential applications of these data include the identification and characterization of signaling pathways involved in astrocyte function, studies of the role of steroid-metabolizing enzymes in the glaucomatous ONH, and further exploration of the role of selected identified genes in experimental animal and in vitro models of glaucoma.
Collapse
Affiliation(s)
- M Rosario Hernandez
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Salvador-Silva M, Ricard CS, Agapova OA, Yang P, Hernandez MR. Expression of small heat shock proteins and intermediate filaments in the human optic nerve head astrocytes exposed to elevated hydrostatic pressure in vitro. J Neurosci Res 2001; 66:59-73. [PMID: 11599002 DOI: 10.1002/jnr.1197] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The small heat shock proteins (sHSP), alpha B-crystallin and Hsp27 are chaperone molecules that maintain the integrity of intermediate filament (IF) network and prevent unfolding of cellular proteins induced by stress. In the optic nerve head (ONH) of eyes with glaucoma, reactive astrocytes expressed Hsp27, perhaps in response to stress related to elevated intraocular pressure. In this study, we determined the effect of elevated hydrostatic pressure (HP) in the synthesis, distribution and co-localization of alpha B-crystallin and Hsp27 with IF in cultured ONH astrocytes. Astrocyte monolayers were pressurized to 60 mm Hg (92% air 8% CO(2)) and incubated at 37 degrees C for 6, 24 or 48 hr. Controls were exposed to ambient pressure. Cells were analyzed by immunocytochemistry, Western blot and immunoprecipitation using antibodies to Hsp27, alpha B-crystallin, vimentin or GFAP. Control astrocytes seemed flat, polygonal with short processes. alpha B-crystallin appeared granular in the perinuclear area and filamentous in the cell periphery. Fine granular Hsp27 was distributed throughout the cytoplasm. GFAP and vimentin co-localized with Hsp27 in the cytoplasm. Astrocytes exposed to HP were star-shaped with long processes. Hsp27 was condensed in large granules around the nucleus. GFAP and vimentin co-localized with Hsp27 and alpha B-crystallin in the perinuclear area. Western blot and metabolic labeling detected increased synthesis of Hsp27, GFAP and vimentin but no change in alpha B-crystallin. These results indicated that GFAP and vimentin associate with Hsp27 and alpha B-crystallin in ONH astrocytes. HP affected the integrity of the cytoskeleton consistent with morphological changes. Small HSP may reinforce and maintain IF integrity in response to HP.
Collapse
Affiliation(s)
- M Salvador-Silva
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
42
|
Ricard CS, Agapova OA, Salvador-Silva M, Kaufman PL, Hernandez MR. Expression of myocilin/TIGR in normal and glaucomatous primate optic nerves. Exp Eye Res 2001; 73:433-47. [PMID: 11825016 DOI: 10.1006/exer.2001.1063] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocilin/TIGR was the first molecule discovered to be linked with primary open angle glaucoma (POAG), a blinding disease characterized by progressive loss of retinal ganglion cells. Mutations in myocilin/TIGR have been associated with age of disease onset and severity. The function of myocilin/TIGR and its role in glaucoma is unknown. Myocilin/TIGR has been studied in the trabecular meshwork to determine a role in regulation of intraocular pressure. The site of damage to the axons of the retinal ganglion cells is the optic nerve head (ONH). The myocilin/TIGR expression was examined in fetal through adult human optic nerve as well as in POAG. Myocilin/TIGR was expressed in the myelinated optic nerve of children and normal adults but not in the fetal optic nerve before myelination. Also examined was the expression in monkeys with experimental glaucoma. The results demonstrate that optic nerve head astrocytes constitutively express myocilin/TIGR in vivo in primates. Nevertheless, myocilin/TIGR is apparently reduced in glaucomatous ONH. The colocalization of myocilin/TIGR to the myelin suggests a role of myocilin/TIGR in the myelinated optic nerve.
Collapse
Affiliation(s)
- C S Ricard
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
43
|
Edwards ME, Good TA. Use of a mathematical model to estimate stress and strain during elevated pressure induced lamina cribrosa deformation. Curr Eye Res 2001; 23:215-25. [PMID: 11803484 DOI: 10.1076/ceyr.23.3.215.5460] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND High intraocular pressure (IOP), which is generally associated with glaucoma, causes lamina cribrosa retrodisplacement and deformation. Shear stress and strain resulting from lamina cribrosa deformation have been implicated in tissue remodeling, changes in retinal astrocyte function and retinal ganglion cell (RGC) death observed in vivo during glaucoma. METHODS A mathematical model was developed to describe the lamina cribrosa exposed to elevated intraocular pressure (IOP). The model is based on the bending theory of plates, incorporates anatomical properties of the lamina cribrosa, and provides estimates of its biomechanical properties. The model relates IOP, the parameter normally correlated with glaucoma, and lamina cribrosa retrodisplacement to stress and strain experienced by cells, parameters that may be more closely associated with cell injury. RESULTS We estimate that shear strains of 0.05 occur at the edge of a 200 microm thick lamina cribrosa at an IOP of 25 mm Hg. We estimate greater lamina cribrosa deformation and higher shear stress and strain for thinner lamina cribrosa and lamina cribrosa of larger radii. CONCLUSION These results may provide better estimates of the stress and strain experienced by cells in the lamina cribrosa and may further our understanding of the forces that contribute to optic nerve degeneration during glaucoma.
Collapse
Affiliation(s)
- M E Edwards
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77943-3122, USA
| | | |
Collapse
|
44
|
Tezel G, Hernandez MR, Wax MB. In vitro evaluation of reactive astrocyte migration, a component of tissue remodeling in glaucomatous optic nerve head. Glia 2001; 34:178-89. [PMID: 11329180 DOI: 10.1002/glia.1052] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In order to improve understanding of remodeling events in the glaucomatous optic nerve head, the migration of optic nerve head astrocytes was studied in vitro. Since elevated intraocular pressure is an important stress factor identified in glaucomatous eyes, optic nerve head astrocytes were incubated under physical stress created by elevated hydrostatic pressure. In addition, they were incubated in the presence of a chemical stimulus, lipolysaccharide (LPS). Migration of reactivated astrocytes in the presence of these stressors was examined using chambers in which cell migration through extracellular matrix-coated pores is only possible following proteolytic digestion of the matrix. We observed that the migratory ability of optic nerve head astrocytes was approximately 4-6 times greater following exposure to elevated hydrostatic pressure or LPS for up to 48 h. Phosphoinositide 3-kinase, protein kinase C, and tyrosine kinase were found to be involved in the signal transduction for activated migration of optic nerve head astrocytes in response to elevated hydrostatic pressure or LPS. In addition, we observed that the stress-induced migration of optic nerve head astrocytes, which is accompanied by proteolytic degradation, resulted in the formation of culture cavities containing mucopolysaccharides. These in vitro findings provide a clearer understanding of the pathophysiologic mechanisms of characteristic tissue remodeling events that occur, in vivo, in the glaucomatous optic nerve head.
Collapse
Affiliation(s)
- G Tezel
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| | | | | |
Collapse
|
45
|
Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 2001. [PMID: 11102475 DOI: 10.1523/jneurosci.20-23-08693.2000] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although glial cells in the optic nerve head undergo a reactivation process in glaucoma, the role of glial cells during glaucomatous neurodegeneration of retinal ganglion cells is unknown. Using a coculture system in which retinal ganglion cells and glial cells are grown on different layers but share the same culture medium, we studied the influences of glial cells on survival of retinal ganglion cells after exposure to different stress conditions typified by simulated ischemia and elevated hydrostatic pressure. After the exposure to these stressors, we observed that glial cells secreted tumor necrosis factor-alpha (TNF-alpha) as well as other noxious agents such as nitric oxide into the coculture media and facilitated the apoptotic death of retinal ganglion cells as assessed by morphology, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and caspase activity. The glial origin of these noxious effects was confirmed by passive transfer experiments. Furthermore, retinal ganglion cell apoptosis was attenuated approximately 66% by a neutralizing antibody against TNF-alpha and 50% by a selective inhibitor of inducible nitric oxide synthase (1400W). Because elevated intraocular pressure and ischemia are two prominent stress factors identified in the eyes of patients with glaucoma, these findings reveal a novel glia-initiated pathogenic mechanism for retinal ganglion cell death in glaucoma. In addition, these findings suggest that the inhibition of TNF-alpha that is released by reactivated glial cells may provide a novel therapeutic target for neuroprotection in the treatment of glaucomatous optic neuropathy.
Collapse
|
46
|
Tezel G, Wax MB. Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 2000; 20:8693-700. [PMID: 11102475 PMCID: PMC6773089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Although glial cells in the optic nerve head undergo a reactivation process in glaucoma, the role of glial cells during glaucomatous neurodegeneration of retinal ganglion cells is unknown. Using a coculture system in which retinal ganglion cells and glial cells are grown on different layers but share the same culture medium, we studied the influences of glial cells on survival of retinal ganglion cells after exposure to different stress conditions typified by simulated ischemia and elevated hydrostatic pressure. After the exposure to these stressors, we observed that glial cells secreted tumor necrosis factor-alpha (TNF-alpha) as well as other noxious agents such as nitric oxide into the coculture media and facilitated the apoptotic death of retinal ganglion cells as assessed by morphology, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, and caspase activity. The glial origin of these noxious effects was confirmed by passive transfer experiments. Furthermore, retinal ganglion cell apoptosis was attenuated approximately 66% by a neutralizing antibody against TNF-alpha and 50% by a selective inhibitor of inducible nitric oxide synthase (1400W). Because elevated intraocular pressure and ischemia are two prominent stress factors identified in the eyes of patients with glaucoma, these findings reveal a novel glia-initiated pathogenic mechanism for retinal ganglion cell death in glaucoma. In addition, these findings suggest that the inhibition of TNF-alpha that is released by reactivated glial cells may provide a novel therapeutic target for neuroprotection in the treatment of glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- G Tezel
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
47
|
Hernandez MR, Pena JD, Selvidge JA, Salvador-Silva M, Yang P. Hydrostatic pressure stimulates synthesis of elastin in cultured optic nerve head astrocytes. Glia 2000; 32:122-36. [PMID: 11008212 DOI: 10.1002/1098-1136(200011)32:2<122::aid-glia20>3.0.co;2-j] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Elastin is a major component of the extracellular matrix (ECM) of the lamina cribrosa in the optic nerve head in humans and nonhuman primates. The lamina cribrosa appears to be the site of damage to the retinal ganglion cell axons in glaucomatous optic neuropathy, characterized in many patients by elevated intraocular pressure (IOP). Type 1B astrocytes are the major cell type in the lamina, synthesize elastic fibers during development, express increased elastin mRNA, and synthesize abnormal elastin in glaucoma. In this study, we determined the effect of elevated hydrostatic pressure on the synthesis of elastin by type 1B astrocytes in culture. Type 1B astrocytes were exposed to gradients of hydrostatic pressure and tested for proliferation, morphology, synthesis, and deposition of elastin. Trichloroacetic acid (TCA) and immunoprecipitation of radiolabeled protein determined total new protein and elastin synthesis. Proteins from the conditioned media were analyzed by Western blot. Levels of elastin mRNA were determined by in situ hybridization. Cell proliferation increased approximately 2-fold after exposure to pressure for one day, approximately 5-fold after 3 and 5 days of exposure to pressure. Confocal and electron microscopic cytochemistry showed a marked increase in intracellular elastin in astrocytes exposed to pressure, as compared with controls. Intracellular elastin was associated with the RER-Golgi region and with the cytoskeleton. Total protein and elastin synthesis increased significantly (P < 0.05) at 3- and 5-day exposure to pressure, as well as the level of elastin mRNA. Elastin protein in the media increased with the level of pressure. These results indicate that hydrostatic pressure stimulates type 1B astrocytes to synthesize and secrete soluble elastin into the media. In glaucoma, type 1B astrocytes may respond to IOP-related stress with increased expression of elastin and formation of elastotic fibers leading to loss of elasticity and tissue remodeling.
Collapse
MESH Headings
- Adolescent
- Adult
- Astrocytes/metabolism
- Astrocytes/pathology
- Astrocytes/ultrastructure
- Cell Division/physiology
- Cell Size/physiology
- Cells, Cultured/metabolism
- Cells, Cultured/pathology
- Cells, Cultured/ultrastructure
- Child
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/metabolism
- Elastin/biosynthesis
- Elastin/genetics
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Glaucoma, Open-Angle/metabolism
- Glaucoma, Open-Angle/pathology
- Glaucoma, Open-Angle/physiopathology
- Glial Fibrillary Acidic Protein/metabolism
- Humans
- Hydrostatic Pressure/adverse effects
- Middle Aged
- Optic Disk/metabolism
- Optic Disk/pathology
- Optic Disk/physiopathology
- Optic Nerve Diseases/metabolism
- Optic Nerve Diseases/pathology
- Optic Nerve Diseases/physiopathology
- RNA, Messenger/metabolism
- Stress, Mechanical
Collapse
Affiliation(s)
- M R Hernandez
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
48
|
Ricard CS, Kobayashi S, Pena JD, Salvador-Silva M, Agapova O, Hernandez MR. Selective expression of neural cell adhesion molecule (NCAM)-180 in optic nerve head astrocytes exposed to elevated hydrostatic pressure in vitro. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:62-79. [PMID: 11000479 DOI: 10.1016/s0169-328x(00)00150-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glaucomatous optic neuropathy is usually associated with elevated intraocular pressure. Optic nerve head astrocytes may respond to intraocular pressure by stimulation of pressure-sensitive mechanoreceptors on the cell surface. Neural cell adhesion molecule (NCAM) a transmembrane protein, mediates cell adhesion and migration. The NCAM 180 isoform increases in astrocytes of glaucomatous optic nerve head. We characterized the relative expression of NCAM isoforms in human optic nerve head astrocytes grown under elevated hydrostatic pressure. Astrocytes cultured from normal human optic nerve heads were exposed to either atmospheric or continuous hydrostatic pressure of 60 mm Hg, and analyzed at 6-48 h. Changes in cell shape, immunoreactivity, and distribution of GFAP, actin and NCAM were observed in pressure-treated cultures. Newly synthesized (35)S-labeled NCAM protein immunoprecipitated from cell lysates was increased 2-fold within 24 h after exposure to elevated pressure compared to control. The increase in NCAM synthesis was primarily due to the NCAM 180 isoform. A significant increase in NCAM 180 mRNA levels was detected by RT-PCR and Northern blots in cultured optic nerve head astrocytes within 6 h after exposure to elevated pressure. NCAM 180 mRNA and protein synthesis decreased after 24 h and returned to control levels by 48 h. Our data indicate that NCAM 180 transcription and synthesis in astrocytes is stimulated by elevated hydrostatic pressure. Because NCAM 180 interacts with the cytoskeleton through an extended cytoplasmic tail, a selective and transient increase in NCAM 180 in optic nerve head astrocytes exposed to elevated pressure may be relevant to the migration and interactions of reactive astrocytes in glaucoma.
Collapse
Affiliation(s)
- C S Ricard
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 63110, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Primary open angle glaucoma is a common eye disease characterized by loss of the axons of the retinal ganglion cells leading to progressive loss of vision. The site of damage to the axons is at the level of the lamina cribrosa in the optic nerve head. The mechanism of axonal loss is unknown but elevated intraocular pressure and age are the most common factors associated with the disease. Previous studies in human glaucoma and in experimental glaucoma in monkeys have established a relationship between chronic elevation of intraocular pressure and remodeling of the optic nerve head tissues known clinically as cupping of the optic disc. This review focuses on the astrocytes, the major cell type in the optic nerve head. Astrocytes participate actively in the remodeling of neural tissues during development and in disease. In glaucomatous optic neuropathy, astrocytes play a major role in the remodeling of the extracellular matrix of the optic nerve head, synthesize growth factors and other cellular mediators that may affect directly, or indirectly, the axons of the retinal ganglion cells. Due to the architecture of the lamina cribrosa, formed by the cells and the fibroelastic extracellular matrix, astrocytes may respond to changes in intraocular pressure in glaucoma, leading to some of the detrimental events that underlie axonal loss and retinal ganglion cell degeneration.
Collapse
Affiliation(s)
- M R Hernandez
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|